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Abstract 

There are different ways of making fabrics but the most common method of producing woven 

fabric is by interlaced yarns. The woven fabric geometry and structure have significant 

effects on their behavior. The woven structures provide a combination of strength with 

flexibility. Woven fabrics are key reinforcements which offer ease of handling, moldability, 

and improved in plane properties. Most of the composites are made by stacking layers of 

woven performs over each other which can cause the delamination failure in composite 

materials. This problem has been tackled by using multilayer woven perform as 

reinforcement, instead of single layer woven fabrics. The structure and properties of a woven 

fabric are dependent upon the constructional parameters such as thread density, yarn fineness, 

crimp, weave etc. As we know, woven fabrics are not capable of description in mathematical 

forms based on their geometry because these are not regular structures; but many researchers 

believe that we can idealize the general characters of the materials into simple geometrical 

forms and physical parameters to arrive at mathematical deductions. It is always assumed that 

the variation of the fabric structure is insignificant in the analysis. The models given by these 

researchers can describe the internal geometry of woven fabric by describing some part of the 

binding wave. But we need a model that can describe binding wave in whole repeat and the 

validation is good from left or right side. We need to obtain not only geometry of binding 

wave but also spectral characterization for analyzing individual components, which can react 

on deformation of the shape of binding wave. 

In this study, an attempt is made to create a theoretical model on the geometry of plain single 

and two layer woven structures and verify them with experimental results. The first part of 

the work deals with the model development and the second part reports on model validation. 

In the first part, the basic description of the geometry of woven fabric has been described. 

Many attempts have been made by different researchers to find a suitable model for 

describing the binding cell. They have worked mathematically to express the shape of the 

binding wave in a given thread crossing in a woven fabric in a steady state. The geometric 

models have been studied to find out their limitations as well. After a comprehensive study, 

the geometry of binding cell in plain weave for single and two layer stitched woven fabrics 

have been presented for theoretical evaluation by Fourier series. This study shows some 

interesting mathematical relationships between constructional parameters of single and two 

layer stitched woven fabrics, so as to enable the fabric designers and researchers to have a 

clear understanding of the engineering aspects of single and two layer woven fabrics. 



 
 

In the second part of the work, the theoretical model for the description of mutual interlacing 

of threads, in multifilament woven fabric structure using Fourier series, derived from plain 

woven structure has been validated with experimental results. The internal geometry of the 

woven fabrics and the deformation of the shape of the binding wave in the single and two 

layer stitched woven structures has been evaluated by the cross-sectional image analysis 

method. The approximation using the linear function f(x) in Fourier series along longitudinal 

and transverse cross-section has been performed for single layer and two layer stitched 

woven fabrics cross-section, which fits well to the experimental binding wave. The spectral 

characteristics of binding waves obtained by Fourier series (theoretical) has been compared 

with the experimental values, which are very close to each other in longitudinal and 

transverse cross-section. By evaluating the geometrical parameters of yarn in the real cross-

section of a woven fabric, it is possible to compare it with the theoretical shape of a binding 

wave by analyzing its individual coordinates. The approximation of the whole binding repeat 

by a partial sum of FS with straight lines description of central line of the binding wave has 

also been performed for different repeat sizes and compared with each other to analyze the 

difference in spectrum. 

Keywords: Weaving, fabric structure, geometry, stitched woven fabrics, Fourier Series, 

multifilament, reinforcement fabrics. 

Anotace 

Existují různé způsoby výroby textilií. Jednou z možností výroby je výroba na základě 

technologie tkaní. Kde tkanina vzniká vzájemným provázáním osnovních a útkových nití. 

Geometrie a struktura tkanin má významný vliv na její chování. Tkaniny jako jeden ze tří 

plošných útvarů jsou klíčové výztuhy, které nabízejí snadnou manipulaci, tvárnost a zlepšují 

rovinné vlastnosti. Většina kompozitů je vyrobena vrstvením z tkaných materiálů, kde může 

nastat separace jednotlivých kompozitních vrstev výztuže. Tento problém může být řešen 

pomocí použitím vícevrstvé tkané výztuže spojkové, místo jednoduché tkaniny. Struktura a 

vlastnosti tkanin jsou závislé na konstrukčních parametrech, jako je jemnost nití, dostava 

(osnovy a útku), vazba, setkání atd. Jak je známo, tkaniny možné popsat pomocí 

matematických forem založených na jejich geometrii. Lze idealizovat obecné charakteristiky 

materiálů do jednoduchých geometrických tvarů a fyzikálních parametrů, k vytvoření 

matematické formulace. Modely mohou popisovat vnitřní geometrii tkanin popisem některé 



 
 

části vazné vlny. Avšak my potřebujeme model, který dokáže popsat vaznou vlnu jako celek 

– celou střídu vazby.  

V této studii se usiluje o vytvoření teoretického modelu geometrie jednoduché a dvouvrstvé 

tkané struktury a jejich ověření s experimentálními výsledky. První část práce se zabývá 

vývojem modelu a druhou částí je zpráva o ověření tohoto modelu. V první části, je líčen 

základní popis geometrie tkanin. Řada výzkumníků učinila mnoho pokusů najít vhodný 

model pro popis vazebné buňky. Byly vytvořené matematické modely pro vyjádření tvaru 

vazebné vlny v příčném řezu plátnového provázání v ustáleném stavu. Tyto geometrické 

modely byly také studovány z hlediska nalezení jejich limitních hodnot provázání. Po 

obsáhlých studiích byla geometrie vazné buňky (pro jednoduché a dvouvrstvé tkaniny 

spojkové) prezentována jako teoretické hodnocení využívající Fourierových řad.  Tato studie 

ukazuje některé zajímavé matematické vztahy mezi konstrukčními parametry jednoduché a 

dvouvrstvé tkaniny spojkové. 

Ve druhé části této práce, byl ověřen teoretický model pro popis vzájemného provázání nití 

ve struktuře jednoduchých tkanin s plátnovou vazbou s využitím Fourierových řad. 

Teoretické modely byly porovnaný s experimentálními hodnotami získanými z reálné vazné 

vlny pomocí obrazové analýzy. Vnitřní geometrie tkaniny a deformace nití ve struktuře 

tkaniny s jednou a dvěma vrstvami byly hodnoceny metodou analýzy obrazu. Pro 

jednoduchou a dvouvrstvou tkaninu spojkovou v podélném a příčném řezu byla provedena 

analýza využitím Fourierových řad, kde vstupní funkce k vyjádření popisu byla použita 

lineární funkce f(x). Spektrální charakteristika, včetně popisu střednice vazné vlny získaných 

pomocí Fourierovy řady (teoretické) byla porovnána s experimentálními hodnotami, které 

jsou v podélném pohledu a příčném průřezu velmi blízké. Hodnocením geometrických 

parametrů osnovních a útkových nití v reálném průřezu tkaniny je možné porovnávat s 

teoretickým tvarem vazné vlny pomocí analýzy jejích jednotlivých souřadnic. V rámci práce 

bylo provedeno hodnocení a porovnání provázání a struktury tkaniny pro různé opakované 

velikosti střídy dvouvrstvé spojkové tkaniny. Jak je patrné z výsledného hodnocení, poloha a 

velikost spojky přímo určuje tvar spektrální charakteristiky vycházející z daného rozvoje 

Fourierovy řady použitého pro konkrétní popis tvaru vazné vlny spojkové dvouvrstvé 

tkaniny. 

Klíčová slova: Tkaní, struktura tkanin, geometrie, tkaniny, Fourierovy řady, multifilament, 

výztuže, vazba. 
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1 Introduction 

In recent years, the woven fabrics have gained much attention because of their superior 

properties over conventional materials used in engineering structures. The woven fabric 

geometry and structure have significant effects on their behavior. For example, for the 

multilayer structures, a good reinforcement material should be chosen as a good 

reinforcement material ensures better properties of a final product. Whereas, to access the 

better properties of reinforcement material, it is very important to understand the internal 

geometry of the woven fabric [1]–[3].  

The study of fabrics mechanics requires special attention due to the large deflection effects 

and the nonlinearity of the textile structures deformation phenomena. As we know, woven 

fabrics are not capable of description in mathematical forms based on their geometry because 

these are not regular structures; but many researchers believe that we can idealize the general 

characters of the materials into simple geometrical forms and physical parameters to arrive at 

mathematical deductions. Researchers have put forward many different forms of fabric 

geometry to represent the configuration of threads in woven fabrics. It is very complex to 

build up a direct mathematical relationship to predict the structural properties of the woven 

fabric [4]. Moreover, it is not possible to rely only on theoretical models, however it can be 

combined with empirical findings as well. In this regard, it is necessary to find out the best 

possible approach, which may use a special method of analyzing the cross-section of woven 

structures to evaluate the fabric geometry in a better way and to correlate it with predicted 

theoretical findings. 

The main aim of this work is the analysis of mutual interlacing of threads in multifilament 

single layer and two layer stitched woven fabric structure by using the proposed methodology 

which is based on Fourier series. 

2 Purpose and aim of the thesis 

The purpose of the work is the description and expression of geometry of woven fabric 

structure - two layer stitched woven fabrics with plain weave in the cross-section. Evaluation 

and analyzation of cross-sectional image of single layer and two layer stitched woven fabric 

structures with plain weave, which can be used as reinforcement fabrics. The main aim is the 

creation of model as well as the development of methodology to analyze the shape of binding 

wave as well as yarn deformation in single layer and two layer stitched woven fabrics with 
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plain weave and to validate it with theoretical models. The work has been divided into the 

following parts. 

1. Understanding the behavior of fiber and yarn by analyzing its physical properties like 

fineness, diameter, twist per meter, tenacity and elongation etc. 

2. To prepare the single and two layer stitched woven structures with different material, weft 

settings and stitching (connection) points on a sample weaving loom. 

3. Study of basic geometric models and analyzing their limitations. An improved theoretical 

model for the description of geometry of cross-section of woven multifilament fabric 

structure – single and two layer stitched woven fabrics with plain weave will be 

presented. 

4. The evaluation of the internal geometry of the woven fabrics and analysis of deformation 

in the single and two layer stitched woven structures by the cross-sectional image analysis 

method. 

5. Performing the Fourier analyses by the mathematical modeling of geometry of binding 

wave in woven fabric structure using Fourier series. Mathematical modelling creates 

information about shape – geometry of binding wave and characteristic of weave and 

interlacing - the spectrum for single layer and two layer stitched woven fabrics with plain 

weave. The approximation of two layer stitched woven fabrics with different repeat size 

will be performed and their spectrum will be analyzed as well. 

6. The validation of experimental values by the proposed theoretical model which is going 

to be proposed for the evaluation of single layer and two layer stitched woven structures. 

3 Overview of the current state of the problem 

Textile structures are recognized for their exclusive combination of light weight, flexibility 

and their capability to offer a combination of strength and toughness [5]. The textile 

structures are inhomogeneous, anisotropic, porous materials with distinct viscoelastic 

properties [6]. The strongest growth potential for advanced structures is in high-performance 

applications such as aerospace, maritime, transport, or construction industries. The properties 

demanded by these applications are met by continuous fiber reinforced composites. Woven 

fabrics are key reinforcements which offer ease of handling, moldability, and improved in 

plane properties [7], [8].  

To understand the internal geometry of woven fabric, which refers to the spatial orientation 

of yarns in the structure of a fabric, many studies have been performed in the past [9], [10]. 
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Pierce’s, Kemp’s, Olofsson’s and Hearl’s model are known as the most used and best-known 

models [11]–[14]. Moreover, there are some investigations in which these mentioned models 

has been compared and evaluated [15], [16]. The principles on which all these models are 

based remain unaltered. It is always assumed in these models that the geometric shape is 

constant for each model of the unit cell or it can be said the variation of the fabric structure 

was considered insignificant in the analysis. 

Fourier transform has been applied by Jaume et al. on woven fabric structures by image 

analysis, which is a non-destructive and non-contact testing technique to obtain the fabric 

structure or the pattern of weaving [17]. Similarly, Bohumila and Stanislav applied discrete 

Fourier transform (DFT) on the determination of yarn waviness for eight-layer carbon 

composites [18]. Whereas it has been described by Brigita Sirkova that by using the sum of 

Fourier series, the spectral characteristic of the approximated course can be obtained. The 

spectral characteristic consists of amplitude and phase characteristics of individual 

wavelengths [19]. Kawabata et al.  developed a 3D sawtooth geometry, which allows the 

implementation of biaxial response in a mechanistic way. The warp and weft axes are 

assumed to be straight lines for simplifications. The current work focuses on a macroscopic 

length scale geometrical model for woven fabrics using the mesoscopic sawtooth geometry 

developed by Kawabata et al. [20]. 

The analyzation of the shape of the binding wave, yarn deformation and mutual interlacing in 

in the whole weave repeat of plain woven fabrics has not been possible by the described 

models earlier so in this study by using Fourier series a model as well as a methodology will 

be developed to analyze the shape of the binding wave in the whole weave repeat of 

multifilament single layer and two layer stitched woven fabric structure. 

4 Theoretical modelling of woven fabric geometry structure 

Woven fabrics are composed of two distinct set of yarns, which are interlaced at right angles 

to each other. The longitudinal yarns are called the warp and lateral yarns are the weft or 

filling [21]. The pattern of interlacing and weave diagram of these two set of yarns for plain 

weave has been shown in Figure 1. Many attempts have been done in the past to find a 

suitable model describing the binding cell, i.e. to express mathematically the shape of the 

binding wave in each thread crossing in woven fabric in the steady state. Pierce model, 

Ollofsson model, hyperbolic model, parabolic shapes are registered as the most used and 

best-known models [22]. 
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Figure 1. Plain woven fabric (a) Interlacing of warp and weft yarn (b) Weave diagram 

and cross-sectional view 

A mathematical model that permits the characterization of fabric structure and surface profile 

is to be developed. For simplification, here we investigate only a model for woven fabrics 

with basic weave patterns. One factor that is common to all weave designs is that of the 

repeating pattern or the unit cell. The unit cell represents the smallest repeat unit of the weave 

architecture and describes the whole reinforcing fabric, so it is necessary to understand it 

[23]. There are some assumptions taken for yarn as it is monofilament, smooth, circular in 

cross-section, crimp is ideal and both warp and weft are perpendicular to each other and 

evenly distributed, without any distortion and having same diameters [24]. 

4.1 Geometry of binding cell in plain weave for single and two layer woven fabric and 

parameters description of woven fabrics 

The woven fabric is treated as an assembly of unit cells and the unit cell is the smallest 

repeating pattern in the structure. The plain fabric is created by the mutual interlacing of two 

set of threads. The manner of the mutual interlacing of threads defines the final structure of 

the fabric. The shape of the binding (crimp) wave and basic geometry of the binding cell 

changes according to the dimension and number of threads in the weave repeat [25]. The 

geometry of the binding cell is characterized by the following parameters and dimensions: 

𝑇1 and 𝑇2 = the yarn count for warp and weft yarn 
𝐷1 and 𝐷2 = setting of warp and weft threads 
𝑑1, 𝑑2 and 𝑑𝑠 R = yarn diameters for warp and weft and their mean diameter 
𝐴 and 𝐵 = the distances of warp and weft threads 
𝑒1 and 𝑒2 = relative waviness of warp and weft yarn in single layer woven fabrics 
ℎ1 and ℎ2 = the heights of warp and weft binding waves in single layer woven  
  fabrics 
𝑛1 and 𝑛2 = number of ends and picks in weave repeat 
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The geometry of the binding point in the plain weaves, for the mathematical model used later, 

is based on the Brierley theory of the tight weave (Figure 2) [26]. A woven fabric in which 

warp and weft yarns do not have mobility within the structure as they are in intimate contact 

with each other are called jammed structures. In such structures the warp and weft yarns will 

have minimum thread spacing and their geometry is called limit geometry. These are closely 

woven fabrics and find applications in wind-proof, water-proof and bullet-proof requirements 

[27]. Whereas the structures other than limit are called looser structures, in which warp and 

weft yarn have some thread spacing and mobility within the structures. The two layer stitched 

woven fabric is composed of two layers of simple woven fabric and these layers are joined 

together by the interlaced or binder yarn. The limit, semi-loose and looser geometry of two 

layer stitched woven fabrics with plain weave have been derived from simple plain weave in 

single layer woven fabrics and it can be observed in Figure 3, Figure 4 and Figure 5 

respectively.  

 
Figure 2. Limit geometry of single layer 

woven fabrics with plain weave 
 

Figure 3. Limit geometry of two layer stitched 

woven fabrics with plain weave 

 
Figure 4. Semi-loose geometry of two layer 

stitched woven fabrics with plain weave 

(geometry between limit and loose) 

 

Figure 5. Looser geometry of two layer stitched 

woven fabrics with plain weave 

The geometry of two layer stitched woven fabrics with plain weave can be divided into 
stitching and non-stitching section as shown in Figure 6. While the geometry of the binding 
cell for other than plain weaves can be derived from the plain weave as well. The looser 
interlacing of the fabric depends on the type of material being used and on the type of 
machine.  



 

 6  
 

 
Figure 6. Geometry of two layer stitched woven fabrics with plain weave (stitched and non-stitched 

section) 

The parameters which are necessary for the calculation of the binding waves are given below. 

𝐴 =
1
𝐷1

     ,   𝐵 =
1
𝐷2

 (1) 

𝑑𝑠 =
𝑑1 + 𝑑2

2
 (2) 

𝑑𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =  𝑑𝑠 ∗  𝑔 (3) 

Where ‘𝑔’ is the constant of deformation obtained from experimental values of yarn cross-

sectional diameter. The difference between the theoretical yarn diameter and the experimental 

diameter in the woven fabric has been obtained which gives us the value of constant ‘𝑔’. It 

can be used to obtain the effective diameter and as output for modelling of this type of 

structure and material. The parameter (ℎ1 and ℎ2) height of binding waves can be determined 

based on: 

a. Experimental methods - from transverse and longitudinal cross-section of woven fabric 

by using image analyse, the real heights of the warp and weft crimp waves from fabric 

centre line can be obtained. 

b. Theoretical methods – it is necessary to know effective diameter of threads and rate of 

warp and weft waviness 𝑒1 and 𝑒2, which can be used in equation (4) and equation (5) for 

determination of heights. The rate of thread waviness 𝑒1 and 𝑒2, can be estimated on the 

basis of individual phases of interlacing from Novikov work [28]. 

ℎ1 = 𝑒1 .𝑑𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 ,          ℎ2 = 𝑒2 .  𝑑𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 (4) 

𝑒1 +  𝑒2 = 1 (5) 

The distance between warp and weft yarn axis and 𝑒1 = 𝑒2 = 0.5  is given by equation (6). 
This equivalency is valid every time, independently to a theoretical model used. 

ℎ1 + ℎ2 = (𝑑1 +  𝑑2)/2 (6) 
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4.2 Mathematical model for the description of binding wave by using Fourier series (FS) 

The description of the shape of binding waves can be provided in the fabric, in the 

longitudinal cross-section (the shape of the binding wave of the warp thread) and in the 

transverse cross-section (the shape of the binding wave of the weft thread), to define the 

mutual position of the warp threads towards weft threads. 

Due to spatial threads distribution in the cross-section of a cloth, the shape of the binding 

waves obtains the form which is near to the harmonic sinus course.  That leads to the idea to 

approximate the binding wave by a sum of Fourier series (FS). For the weave of the fabric, as 

it is characteristic that the pattern of binding is repeated regularly (periodically) across the 

whole fabric width, and that it is continuous. The Fourier approximation respects this 

periodicity and shape of the binding wave, in the contrary to the above-mentioned models of 

single threads crossing. In our case of the periodically repeated pattern of thread waves, it 

means to substitute the binding wave by a system of sine curves with increasing frequencies 

(decreasing wavelengths), with different amplitudes and phase shifts. Apart from the 

approximated course, we also obtain the spectral characteristic of the course, by 

approximations using the sum of Fourier series. Spectral characteristic consists of amplitude 

and phase characteristics of individual wavelengths. The wavelengths are the whole fractions 

of the basic wavelengths of the pattern on the interval of the binding repeat (0, binding 

repeat). 

For the creation of spectral characteristics of the repeat of binding in the longitudinal and 

transverse cross-sections, it is necessary first to describe the spectral characteristics of 

individual binding waves in the binding repeat in both the longitudinal as well as transverse 

cross-section. It has been said, that in the basic weaves, the interlacing of threads is identical 

in the longitudinal as well as in the transverse cross-section (using identical parameters of 

threads). This is not true for derived higher weaves or special weaves. The shapes of the 

binding waves in the derived weaves are different in the longitudinal and transverse section. 

Resulting from individual sections, spectral characteristics of the repeat of the binding in the 

derived weaves will be different for the longitudinal and for the transverse cross-sections. 

The difference of individual spectral characteristics depends on the number of threads 

(binding waves) in the binding repeat and on their mutual interlacing. The shape of the 

binding wave or its course can be possibly obtained by two methods:  
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4.2.1 FS approximation of binding wave (theoretical general description of model) 

There is a tendency to avoid labored and tardy procedure of the creation of the cross-sections 

experimentally. The values of the course of one binding wave will be obtained by substitution 

of the wave shape by a well-known analytic function 𝑓(𝑥) (linear, circular, parabolic, 

hyperbolic, etc.), or created by a sum of functions defined on the specified interval ‘𝑇’. The 

interval is given by the width of the repeat of binding. For a function 𝑓(𝑥), periodic on an 

interval [0,𝑇], the Fourier series of a function 𝑓(𝑥), is given by. 

𝑓(𝑥) =
𝑎0
2

+  �𝑎𝑛 𝑐𝑜𝑠 �
𝑛. 2.𝜋. 𝑥

𝑇
�

∞

𝑛=1

+ �𝑏𝑛 𝑠𝑖𝑛 �
𝑛. 2.𝜋. 𝑥

𝑇
�

∞

𝑛=1

 (7) 

Where the coefficients are,  

𝑎0 =
2
𝑇

 � 𝑓(𝑥) 𝑑𝑥
𝑇

0
  (8) 

𝑎𝑛 =
2
𝑇

 � 𝑓(𝑥) . 𝑐𝑜𝑠 �
𝑛. 2.𝜋. 𝑥

𝑇
�𝑑𝑥

𝑇

0
                     (𝑛 = 0,1,2, … )    (9) 

𝑏𝑛 =
2
𝑇

 � 𝑓(𝑥) . 𝑠𝑖𝑛 �
𝑛. 2.𝜋. 𝑥

𝑇
�𝑑𝑥 

𝑇

0
                     (𝑛 = 1,2,3, … )   (10) 

During the modelling and searching for certain dependencies, it is necessary to consider the 

equilibrium between the efficiency of the used model and its accuracy to the expressed 

parameter. This model has been extended for single layer and two layer stitched woven 

fabrics and explained further. 

A) Modelling of binding wave of single layer plain woven fabric cross-section 

Mathematical expression of geometry of binding wave using Fourier series -  construction of 
structure of woven fabric of single layer of plain woven fabric geometry 

Modelling of central line of threads in cross-section in woven fabric is based on Fourier 

series. For mathematical definition of binding wave, in this case as an input function f(x) in 

Fourier series, it is possible to use different mathematical shapes like linear, circular arc, 

parabolic, hyperbolic, sine or rectangular description [19]. Based on literary research [29]–

[31] for mathematical modelling of binding wave using the Fourier series, it is sufficient that 

the simplest description of the central line of the binding wave is given by the linear 

description by means of two straight lines as shown in Figure 7 for single layer woven fabric. 

This description is applicable in every interlacing of basic weaves as well as of higher 

derived weaves. It allows the evaluation of the warp and weft threads in the interlacing. In the 

case of single layer plain weave, it represents the weaving with the simplest interlacing, 
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therefore, only two different interlacing threads appear in the binding repeat along the 

longitudinal and transverse cross-sections. 

 
Figure 7. Geometry and graphical illustration of linear description of central line of 

thread in cross-section of single layer woven fabrics with plain weave 

For the approximation of a single layer woven fabric by a partial sum of FS with straight 

lines description of central line of the binding wave, the period of the periodic function has 

been taken as 𝑃 = 𝑇 = 2𝐴 in single layer woven fabrics and parameters mentioned below 

have been taken. 

ℎ2 = 59 µ𝑚, 𝐴 = 1220µ𝑚, 𝑑𝑠 = 280 µ𝑚,         𝑔 = 0.6 

The equations of the linear functions were used in the Fourier equations to find the 

coefficients 𝑎0,𝑎𝑛 and 𝑏𝑛. The final equations are; 

𝑎0 =
2
𝑇

 �� (𝑘. 𝑥 + ℎ2) 𝑑𝑥 
𝐴

0
+  � (−𝑘. (𝑥 − 𝐴) −  ℎ2) 𝑑𝑥 

2𝐴

𝐴
� (11) 

𝑎𝑛 =
2
𝑇
�� (𝑘. 𝑥 +  ℎ2) 𝑐𝑜𝑠 �

𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
𝐴

0
+  � (−𝑘. (𝑥 − 𝐴) −  ℎ2) 𝑐𝑜𝑠 �

𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
2𝐴

𝐴
� (12) 

𝑏𝑛 =
2
𝑇
�� (𝑘. 𝑥 +  ℎ2) 𝑠𝑖𝑛 �

𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
𝐴

0
+  � (−𝑘. (𝑥 − 𝐴) −  ℎ2) 𝑠𝑖𝑛 �

𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
2𝐴

𝐴
� (13) 

Where 𝑘 is the slope of the linear function in single layer plain woven fabric. The final 
approximation function is, 

𝐹𝛼(𝑥) =
𝑎0
2

+  �𝑎𝑛 𝑐𝑜𝑠 �
𝑛. 2.𝜋
𝑇

𝑥� +
𝛼

𝑛=1

 �𝑏𝑛 𝑠𝑖𝑛 �
𝑛. 2.𝜋
𝑇

𝑥�
𝛼

𝑛=1

                 (𝛼 = 1,2,3, . . . ) (14) 

By applying Fourier approximations, it changes the shape and gives us the shape which is 

comparable to the real shape of binding wave, which will be explained later in experimental 

data validation. 

B) Modelling of influence of plain weave repeat in non-stitched part of binding wave of 
two-layer stitched woven cross-section 

a. Mathematical expression and description of binding wave in two-layer stitched cross-

section of woven fabric - construction of structure of woven fabric with minimum time 

plain weave repeat in non-stitching section 
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The geometry of two layer stitched woven fabrics with plain weave can be divided into 

stitching and non-stitching section as shown by upper binding wave in Figure 8. For regular 

repeat of the interlacing the minimum number of plain weave repeat in non-stitching section 

is one-time as given in figure. The linear description of the central line of the binding wave in 

two layer stitched woven fabric has also been illustrated in Figure 8. For the approximation of 

a two layer woven fabric by a partial sum of FS with straight lines description of central line 

of the binding wave, the period of the periodic function has been taken as 𝑃 = 𝑇 = 4𝐴. Some 

additional parameters have been described for the geometry of the binding cell of two layer 

stitched woven fabric as under. 

ℎ𝑓1 and ℎ𝑓2 =   the height of first warp and weft binding waves in two layer woven fabrics 
ℎ𝑠1  and ℎ𝑠2 =   the height of second warp and weft binding waves in two layer woven  
 fabrics 
𝑒𝑓1 and 𝑒𝑓2 =  relative waviness of first warp and weft yarn in two layer woven fabrics 
𝑒𝑠1 and 𝑒𝑠2 =  relative waviness of second warp and weft yarn in two layer woven fabrics 
ℎ′𝑓2  =  the height of first warp binding waves in two layer woven fabric in non- 

     stitching section (ℎ𝑓2  ≠  ℎ′𝑓2) 
ℎ′𝑓2 = ℎ𝑓2 − (ℎ1 + ℎ2) (15) 

 
Figure 8. Geometry and graphical illustration of linear description of central line of thread in 

cross-section of two layer stitched woven fabrics with plain weave 

The equations of the linear functions were used in the Fourier equations to find the 

coefficients 𝑎0,𝑎𝑛 and 𝑏𝑛. There are four linear equations in these coefficients, the first two 

are for stitching section and the last two are for non-stitching section. The final equations are 

given by: 

𝑎0 =
2
𝑇
��� �𝑘1.𝑥 +  ℎ𝑓2� 𝑑𝑥 

𝐴

0
+ � �−𝑘1. (𝑥 − 𝐴) −  ℎ𝑓2� 𝑑𝑥 

2𝐴

𝐴
�

+ �� �𝑘2. (𝑥 − 2𝐴)  +  ℎ𝑓2� 𝑑𝑥 +  � �−𝑘2. (𝑥 − 3𝐴) +  ℎ′𝑓2� 𝑑𝑥 
4𝐴

3𝐴

3𝐴

2𝐴
�� 

(16) 
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𝑎𝑛 =
2
𝑇
��� �𝑘1.𝑥 + ℎ𝑓2� 𝑐𝑜𝑠 �

𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
𝐴

0

+  � �−𝑘1. (𝑥 − 𝐴) −  ℎ𝑓2� 𝑐𝑜𝑠 �
𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
2𝐴

𝐴
�

+ �� �𝑘2. (𝑥 − 2𝐴)  +  ℎ𝑓2� 𝑐𝑜𝑠 �
𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥
3𝐴

2𝐴

+  � �−𝑘2. (𝑥 − 3𝐴) +  ℎ′𝑓2� 𝑐𝑜𝑠 �
𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
4𝐴

3𝐴
 �� 

(17) 

𝑏𝑛 =
2
𝑇
��� �𝑘1.𝑥 + ℎ𝑓2� 𝑠𝑖𝑛 �

𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
𝐴

0

+  � �−𝑘1. (𝑥 − 𝐴) −  ℎ𝑓2� 𝑠𝑖𝑛 �
𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
2𝐴

𝐴
�

+ �� �𝑘2. (𝑥 − 2𝐴)  +  ℎ𝑓2� 𝑠𝑖𝑛 �
𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥
3𝐴

2𝐴

+  � �−𝑘2. (𝑥 − 3𝐴) +  ℎ′𝑓2� 𝑠𝑖𝑛 �
𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
4𝐴

3𝐴
 �� 

(18) 

Where 𝑘1 and 𝑘2 are the slopes of the linear functions in two layer stitched woven fabrics in 
stitching and non-stitching sections respectively. The final approximation function is, 

𝐹𝛼(𝑥) =
𝑎0
2

+  �𝑎𝑛 𝑐𝑜𝑠 �
𝑛. 2.𝜋
𝑇

𝑥� +
𝛼

𝑛=1

 �𝑏𝑛 𝑠𝑖𝑛 �
𝑛. 2.𝜋
𝑇

𝑥�
𝛼

𝑛=1

                 (𝛼 = 1,2,3, . . . ) (19) 

b. Mathematical expression and description of binding wave in two-layer stitched cross-

section of woven fabric - Construction of structure of woven fabric with maximum (j) 

time plain weave in non-stitching section 

If we have more number of plain weave repeats in non-stitching section, then we can 

illustrate the geometric description accordingly and the equation for FS will be different. 

Suppose we have ‘𝑁’ number of times of plain weave in non-stitching section (Figure 9). In 

this case the equation for non-stitching section will be the sum of ‘𝑁’ number of times of 

plain repeat. 

 
Figure 9. Graphical illustration of linear description of central line of thread in cross-section of two 

layer stitched woven fabrics with plain weave (assuming it maximum time) 
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The equations of the linear functions will be used in the Fourier equations to find the 

coefficients 𝑎0,𝑎𝑛 and 𝑏𝑛. It is explained in the final equations given below: 

Where 𝑘1 and 𝑘2 are the slopes of the linear functions. The final approximation function is, 

𝐹𝛼(𝑥) =
𝑎0
2

+  �𝑎𝑛 𝑐𝑜𝑠 �
𝑛. 2.𝜋
𝑇

𝑥� +
𝛼

𝑛=1

 �𝑏𝑛 𝑠𝑖𝑛 �
𝑛. 2.𝜋
𝑇

𝑥�
𝛼

𝑛=1

                 (𝛼 = 1,2,3, . . . ) (23) 

4.2.2 Mathematical expression and description of real binding wave using Fourier 

series (experimental analyses of binding wave in cross-section of woven fabric) 

It is the approximation of the whole binding wave course obtained experimentally by a partial 

sum of Fourier series (harmonic synthesis). The series is given by the table of equidistant co-

ordinates which will be obtained from the real fabric (real longitudinal and transverse cross-

sections) by the visual analysis.  

𝑎0 =
2
𝑇
��� �𝑘1.𝑥 +  ℎ𝑓2� 𝑑𝑥 

𝐴

0
+  � �−𝑘1. (𝑥 − 𝐴) −  ℎ𝑓2� 𝑑𝑥 

2𝐴

𝐴
�

+ ��� �𝑘2. (𝑥 − 𝑗.𝐴)  +  ℎ𝑓2� 𝑑𝑥 
(𝑗+1)𝐴

(𝑗)𝐴
�

+ � �−𝑘2. (𝑥 − 𝑙.𝐴) + ℎ′𝑓2� 𝑑𝑥 
(𝑙+1)𝐴

(𝑙)𝐴
�� 

(20) 

𝑎𝑛𝑑             𝑙 = 3,5,7, . . . ,𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑎𝑡𝑠 (𝑜𝑛𝑙𝑦 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑠)  
Where,       𝑗 = 2,4,6, . . . ,𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑎𝑡𝑠 (𝑜𝑛𝑙𝑦 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠)           

 

𝑎𝑛 =
2
𝑇
��� �𝑘1.𝑥 + ℎ𝑓2� 𝑐𝑜𝑠 �

𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
𝐴

0

+  � �−𝑘1. (𝑥 − 𝐴) −  ℎ𝑓1� 𝑐𝑜𝑠 �
𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
2𝐴

𝐴
�

+ ��� �𝑘2. (𝑥 − 𝑗.𝐴)  +  ℎ𝑓2�𝑐𝑜𝑠 �
𝑛. 2.𝜋
𝑇

𝑥�  𝑑𝑥 
(𝑗+1)𝐴

(𝑗)𝐴
�

+ � �−𝑘2. (𝑥 − 𝑙.𝐴) +  ℎ′𝑓2�𝑐𝑜𝑠 �
𝑛. 2.𝜋
𝑇

𝑥�  𝑑𝑥 
(𝑙+1)𝐴

(𝑙)𝐴
�� 

(21) 

𝑏𝑛 =
2
𝑇
��� �𝑘1.𝑥 +  ℎ𝑓2� 𝑠𝑖𝑛 �

𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
𝐴

0

+  � �−𝑘1. (𝑥 − 𝐴) −  ℎ𝑓2� 𝑠𝑖𝑛 �
𝑛. 2.𝜋
𝑇

𝑥�𝑑𝑥 
2𝐴

𝐴
�

+ ��� �𝑘2. (𝑥 − 𝑗.𝐴)  +  ℎ𝑓2�𝑠𝑖𝑛 �
𝑛. 2.𝜋
𝑇

𝑥�  𝑑𝑥 
(𝑗+1)𝐴

(𝑗)𝐴
�

+ � �−𝑘2. (𝑥 − 𝑙.𝐴) + ℎ′𝑓2�𝑠𝑖𝑛 �
𝑛. 2.𝜋
𝑇

𝑥�  𝑑𝑥 
(𝑙+1)𝐴

(𝑙)𝐴
�� 

(22) 
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The basic parameters of binding wave in real conditions are detected based on image analysis 

(using the software NIS elements as shown in Figure 10), which are needed to obtain the 

coefficient of Fourier series, i.e. 𝑎0, 𝑎𝑛 and 𝑏𝑛. The period of the periodic function can be 

taken as 𝑃 = 𝑇, which is the total length of the periodic wave. The coefficients of FS are; 

𝑎0 =
2
𝑚

 (𝑦𝑖) (24) 

𝑎𝑛 =
2
𝑚

 ��𝑦𝑖 . 𝑐𝑜𝑠 �
𝑛. 2.𝜋. 𝑖
𝑚

��
𝑚

𝑖=1

  (25) 

𝑏𝑛 =
2
𝑚

 ��𝑦𝑖 . 𝑠𝑖𝑛 �
𝑛. 2.𝜋. 𝑖
𝑚

��
𝑚

𝑖=1

 (26) 

Where 
m = number of Intervals (0,𝑇) 
𝑦𝑖 = function value of course at a given point 𝑥𝑖      (𝑥𝑖 = 𝑥 + 𝑖ℎ;     ℎ = 𝑇

𝑚
;      𝑖 = 0, . . . ,𝑚), 

n = harmonic component. 

 
Figure 10. Single layer plain woven fabric with its real cross-section, binding wave (image analysis 

software NIS element) 

The application of Fourier transformation enables to find the wavelength and phase angle of 

crimp wave as well. For individual components amplitude and phase shift pays the same 

relationship as in the case of normal equation and are given by; 

𝐴𝑛 = �(𝑎𝑛)2 + (𝑏𝑛)2 (27) 

𝜙𝑛 = 𝑎𝑡𝑎𝑛(
𝑏𝑛
𝑎𝑛

) (28) 

The final approximation function is; 

𝑇𝛼(𝑥) =
𝑎0
2

+ ��𝐴𝑛 𝑠𝑖𝑛 �
𝑛. 2.𝜋
𝑇

𝑥 +  𝜙𝑛�
𝛼

𝑛=1

�                                (𝛼 = 1,2,3, . . . ) (29) 
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5 Used materials, studied methods 

5.1 Materials 

Basalt 66x2 Tex continuous multifilament plied twisted yarn was used as a raw material. The 

plied twisted yarn with small number of twist has been used to avoid fibrillation during 

weaving of multifilament yarn. Sample weaving loom (CCI SL-7900) was used to make the 

woven structures, keeping same yarn count in warp and weft. All other parameters like weft 

insertion speed and warp tension was kept the same for all fabric samples. Woven samples 

were produced with different pick density, stitch distance, weave and number of layers, 

according to the experimental plan shown in Table 1 [32]. The sample B1-B3 are single layer 

woven structures with plain weave and B4-B7 are two layer stitched woven structures. The 

basic fabric structures for single layer and two layer stitched woven fabrics are shown in 

Figure 11. 

Table 1. Construction parameters of woven fabrics 

Sample 
code  

Ends/
cm 

Picks/
cm Design Sample 

code  
Ends/
cm 

Picks
/cm Design 

B1 8.1 6.5 Single layer  B4 16.2 18.2 Two layer stitched  
(S.D.= 0.5 x 0.5) 

B2 8.1 8.5 Single layer B5 16.2 18.2 Two layer stitched  
(S.D.= 1x1) 

B3 8.1 10.8 Single layer B6 16.2 18.2 Two layer stitched  
(S.D.= 1x1.5) 

    B7 16.2 18 Two layer stitched 
(S.D.= 1x2) 

*B = Basalt, S.D. = stitch distance (cm)     

 
Figure 11. (a) Single layer plain woven fabric, (b) Two layer stitched plain woven fabric 

5.2 Methodology 

The tensile properties of Basalt yarn were tested using TIRA 2300 instrument in accordance 

with ASTM D885 [33], while yarn twist per meter was measured by MesdanLAB twist tester 

machine according to standard procedure ISO 2061:1995 [34]. Similarly, the yarn linear 

density was measured from a lea of one hundred meters according to standard test procedure 

ISO 1144:2016 [35]. Yarn diameter was determined by longitudinal view method with the 
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help of instrument in accordance to IS 22-102-01/01[36]. The image analysis of the yarn was 

performed by software LUCIA. 

5.2.1 Cross-sectional image analysis 

To measure the geometry of the yarn cross-section in fabric, the fabric samples are 

impregnated in the epoxy mixture and pre-curing and post-curing was performed. The 

prepared hard bodies were then cut into pieces of 3 mm thickness in a manner that the cutter 

was perpendicular to the fabric surface and one group of either warp or weft ends to cut them 

vertically. Then the samples were fixed into tinny tubs having notch of 4 mm. The epoxy 

resin was poured into these tubs and upon cooling of epoxy in the tubs, the samples were 

placed in the oven at 80oc for 60 minutes (post curing). Later, the slicing was performed by 

precision saw cutter and the real images has been taken using the projection microscope 

equipped with digital camera [37]. The test procedure with all the steps involved for cross-

sectional image analysis of woven fabric has been shown in Figure 12.  

5.2.2 Image processing technique  

The cross-sectional image analysis of the fabrics was performed by NIS Elements software in 

accordance with IS 46-108-01/01 [37]. The software is semi-objective based and uses 

specific macro for determination of image properties. The user intervention was adopted, and 

all necessary measurements were obtained stepwise from the fabric real image. The input of 

the macro is colored image of fabric longitudinal and transverse cross-section, this real image 

has been processed and transformed to binary system (grey structure), in which we are able to 

analyze easily where are the fibers in the picture. The test procedure has been showed in  

Figure 13. 
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Figure 12. Method for cross-sectional image analysis of woven fabric 

 
Figure 13. Test procedure 

for image processing by 

NIS element software 

5.2.3 Shape of yarn in cross-section of woven fabric 

Shape (roundness) is a factor which can influence the appearance of the end product of the 

yarn [38]. It is the ratio of short to long axis of ellipse (circular = 1). Initially the yarn cross-

section is assumed to be circular with diameter ‘d’ and incompressible, which becomes a 

flattened shape after being woven into fabric, due to different stresses on it as shown in 

Figure 14. After deformation it has the shape having the yarn width (major diameter, in a 

plane parallel to the fabric surface) ‘a’ and yarn height (minor diameter, in a plane 

perpendicular to fabric surface) ‘b’, and usually a > d and b < d. It is supposed that the yarn 

axis is in the middle of ‘a’ and ‘b’. To calculate the shape factor of the yarn cross-section, the 

major diameter (a) of yarn in the plane approximately parallel to the fabric surface and minor 

diameter (b) of yarn in the plane approximately perpendicular to the fabric surface of the 

elliptical yarn, were measured in each image as shown in Figure 15 [39].  

 
Figure 14. Geometry of yarn cross-

section 

Figure 15. Measuring method of yarn cross-

section 



 

 17  
 

6 Summary of the results achieved 

6.1 Cross-sectional image analysis of woven fabrics 

The segmented cross-sectional image of a 

woven fabric (B1) can be seen in Figure 16. 

It is possible to measure the geometry of the 

individual fabric cross-section; the diameter 

of yarns, their deformation, yarn spacing, 

height of binding wave, the angle of the yarn 

axis (interlacing angle), the length of the 

yarn axis in the cross-section of the fabric, 

the crimp of yarns in the fabric, the real 

shape of the binding wave through the wave 

coordinates, and the fabric thickness. The 

binding wave data of ten samples for each fabric type were obtained and the central line of 

the average binding wave was calculated. The average binding wave can be seen in Figure 17 

for fabric sample (B1). 

 
Figure 17. Average binding wave of a single layer fabric (B1) in transverse cross-section 

6.2 Evaluation of deformation of thread in cross-section of woven fabric 

It is possible to substitute the shape of yarn in the cross-section of woven fabric according to 

the models of yarn deformation which has been described earlier. The elliptical substitution 

of yarn (based on Pierce elliptical model) in the cross-sectional image of woven fabric can be 

seen in  Figure 18 and it has been used to calculate the effective values of yarn diameter, 

which should be used later in Fourier analysis. It is not necessary to use Fourier series 

analysis for yarn cross-sections but for the binding wave in woven fabric. To analyze the yarn 

cross-section, it is necessary to use some other theories of prediction. The Fourier series is for 

periodic function which holds good for the binding wave analysis, while the yarn cross-

section is the shape which is given by Pierce’s, Kemp’s, and Hearl’s models. 

Figure 16. Cross-sectional image of a segmented 

woven fabric (B1) in NIS software – Overlay 

image of (a) binding wave, (b) coordinates of 

center line of binding wave and (c) cross-

sections. 
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To study the effect of change in pick density on shape of binding wave and yarn cross-

section, it can be observed in Figure 19 that major diameter (a) of weft yarn is greater than 

that of adjacent warp yarns, which means more flatness in weft yarns. The major diameter (a) 

is decreasing from (B1) to (B3) and minor diameter (b) is increasing for warp yarn, while it is 

opposite in case of weft yarns. As the pick density increases, the yarn height (b) for warp 

yarn increases which can result in higher crimp and waviness for the binding wave of weft 

yarn [40].  

 
Figure 18. Elliptical substitution of the 

yarn cross-sectional shape in the cross-

section of woven fabric Figure 19. Effect of pick density on major and minor 

diameter of single layer woven fabrics 

6.3 Approximation of binding wave of single layer basalt woven fabrics in cross-section 

using Fourier series  

For the approximation of binding wave in cross-section in single layer of plain woven fabrics 

by a partial sum of FS with a linear description of the central line of the binding wave, the 

parameters required are given in Table 2. The linear descriptions of the binding wave in 

longitudinal and transverse cross-sections for fabric sample (B1) are shown in Figure 20. 

Table 2. Input parameters for the mathematical modeling (sample B1) 

Yarn count (Tex) T 132 Height of warp from center (µm)  h1 109 

Warp yarn diameter (µm) d1 168 Height of weft from center (µm) h2 59 

Weft yarn diameter (µm) d2 168 Density of warp yarns (1/cm) D1 8.15 

Mean yarn diameter (µm) ds 168 Density of weft yarns (1/cm) D2 6.5 

Warp yarn spacing (µm) A 1220 Weft yarn spacing (µm) B 1539 

  
Figure 20. Graphical illustration of linear description of central line of thread in cross-section for 

sample (B1) in (a) longitudinal, and (b) transverse cross-section of woven fabric 
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The real cross-section for the sample (B1), its experimental binding waves and FS 

approximation using equation (29) along longitudinal cross-section can be observed in Figure 

21. It can be observed that the approximation done by Fourier series fits well to the 

experimental binding wave. Each of the binding waves obtained by Fourier series (where 

𝛼 = 1,2,3, .. ) has its spectral characteristic which evaluates the course of the binding wave in 

terms of geometry, eventual deformation and random changes resulted from the stress of 

individual threads. The spectral characteristics of the single layer fabric sample (B1) in 

longitudinal cross-section has been calculated using equation (27) and are also shown in 

Figure 21. First and second binding waves are identical in the longitudinal and transverse 

cross-sections. Similarly, the third and fourth binding waves are also identical and so on. The 

first harmonic component (A1) represents the amplitude of the first binding wave, while 

second harmonic component (A2) is the difference between first and second binding wave 

and as these are identical so the difference between them is zero. In the similar way, the 

difference between the other binding waves has been calculated which is continuously 

decreasing.  The interlacing in the plain weave is the interlacing with the smallest binding 

repeat, with only two different interlacing threads in both cross-sections. The height of the 

first harmonic component (A1) also tells us about the deformation of binding wave in 

comparison with other fabrics. While the third component (A3) tells us about the rigidity of 

woven fabric, when the difference between second and third binding wave is high then this 

value is more. The higher value of the amplitude of (A3) means the fabric (B1) is more rigid 

in longitudinal cross-section. The FS approximation of average binding wave has been 

performed theoretically using equation (14) and experimentally using equation (29), while 

their spectral characteristics has been obtained using equation (27) and compared with each 

other given in Figure 21 as well. It can be observed that our predicted (theoretical) values 

obtained by Fourier model are close to experimental spectral characteristics values. The 

difference is in the even number of harmonic components, which is not equal to zero in 

experimental values. Moreover, it has been observed that just by adding few number 

of sines and cosines series we can get a better approximation of binding wave. As the Fourier 

series is an expansion of a periodic function 𝐹(𝑥) in terms of an infinite sum 

of sines and cosines. In the figures 𝐹1(𝑥) (orange line) is the sum of one term of Fourier 

series, while in 𝐹3(𝑥) (green line) it is the sum of three terms of Fourier series to get better 

approximation. 

http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/Cosine.html
http://mathworld.wolfram.com/PeriodicFunction.html
http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/Cosine.html
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Figure 21. Cross-section of real binding wave of woven fabric, Fourier approximation and spectral 

characteristics of binding wave in longitudinal cross-section for fabric sample (B1) 

Similarly, in Figure 22 and Figure 23 the real cross-sections, Fourier approximation and 

spectral characteristics of binding wave in longitudinal cross-section for fabric sample (B2) 

and (B3) can be observed as well. It can also be observed from the Figure 21 to Figure 23 that 

with the increase in pick density, the deformation in bending wave of warp yarn in 

longitudinal cross-section is consecutively increasing from (B1) to (B3), while the height of 

their crimp wave is continuously decreasing, which can also be observed with amplitude of 

the first harmonic component (A1). The reason for this is that at high pick setting, the weft 

yarn gets less space to be flat and warp yarn more space, in fabric plane and hence, the 

binding wave of warp yarn attains more deformation. 
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Figure 22. Cross-section of real binding wave of woven fabric, Fourier approximation and spectral 

characteristics of binding wave in longitudinal cross-section for fabric sample (B2) 

 
Figure 23. Cross-section of real binding wave of woven fabric, Fourier approximation and spectral 

characteristics of binding wave in longitudinal cross-section for fabric sample (B3) 

The real cross-section for the sample (B1), its experimental binding waves and FS 

approximation using equation (29) along transverse cross-section can be observed in Figure 

24. It can be observed that the approximation done by Fourier series fits well to the 

experimental binding wave. The difference in amplitude can be analyzed as well, the 

deformation in transverse cross-section (binding wave of weft) is more as compared to 

deformation in longitudinal cross-section (binding wave of warp). The spectral characteristics 

of fabric sample (B1) in transverse cross-section has been calculated using equation (27) and 

are shown in Figure 24 as well. 
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Figure 24. Cross-section of real binding wave of woven fabric, Fourier approximation and 

spectral characteristics of binding wave in transverse cross-section for fabric sample (B1) 

Similarly, in Figure 25 and Figure 26 the real cross-sections, Fourier approximation and spectral 

characteristics of binding wave in transverse cross-section for fabric sample (B2) and (B3) can be 

observed as well.  

  
Figure 25. Cross-section of real binding wave of woven fabric, Fourier approximation and spectral 

characteristics of binding wave in transverse cross-section for fabric sample (B2) 

It can also be observed from the Figure 24 to Figure 26 that with the increase in pick density, 

the deformation in bending wave of weft yarn in transverse cross-section is consecutively 

decreasing from (B1) to (B3), while the height of their crimp wave is continuously 

increasing, which can also be observed with amplitude of the first harmonic component (A1). 
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This is because, at low pick setting, the weft yarn gets more space to be flat in fabric plane 

and hence, its binding wave attains more deformation. 

  
Figure 26. Cross-section of real binding wave of woven fabric, Fourier approximation and spectral 

characteristics of binding wave in transverse cross-section for fabric sample (B3) 

In Figure 27 and Figure 28, the experimental values of binding waves and their spectrum can 

be observed in longitudinal and transverse cross-section, to analyze their deformation in 

comparison with each other. It can be analyzed in Figure 27, as the weft density is 

continuously increasing from (B1) to (B3), it is affecting the width (period) and deformation 

of the binding wave of warp yarn. It can also be explained by the effect of density in Figure 

28 as the interval or density in transverse cross-section is fixed so there is no change in the 

period of the binding waves of weft yarn, but in the heights (amplitudes). It can be observed, 

when the density is low (sample B1) the deformation of binding wave of weft yarn is high 

because of the availability of more yarn spacing, which lets the yarn to deform easily even on 

small tensions. While at higher densities (sample B3) the spaces between weft yarns are so 

less that they do not let the weft yarns to get higher deformations. In this case the stresses 

increase on binding wave of warp yarn and eventually it deforms more. It is the balance of 

force from the law of action and reaction, the longitudinal and transverse cross-sections 

complement each other. 

The difference in amplitude can be analyzed by the harmonic analyses as well, the 

deformation in longitudinal cross-section (binding wave of warp) is less for sample (B1) as 

compared to deformation in transverse cross-section (binding wave of weft). When one yarn 

gets more deformation then the other yarn connected to it, deforms less as in case of the 
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binding wave of warp yarn. It is called the balance of crimp between warp and weft [41]. 

Similarly, it can be observed how the amplitude of first harmonic component is decreasing in 

longitudinal cross-section from (B1) to (B3), while it is increasing in transverse cross-section 

of woven fabric. 

 
Figure 27. Shape deformation of binding wave in plain woven fabrics (B1-B3) in longitudinal 

cross-section 

 
Figure 28. Shape deformation of binding wave in plain woven fabrics (B1-B3) in transverse cross-

section 

The FS approximation of single layer plain Glass woven fabrics by a partial sum of FS with a 

linear description of the central line of the binding wave have been performed as well [42]. 

All the parameters were kept same as of Basalt woven fabric and results are shown in 

Appendix B. As we have the same Glass and Basalt material and their linear density is also 

almost same, so we have obtained the similar results of approximation and harmonic analysis. 

Some small changes in deformation are given by the irregularity and non-uniformity of the 

structures. 
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6.4 Approximation of binding wave of two layer stitched basalt woven fabrics in cross-

section using Fourier series  

The fabric design and their real cross-sectional images of binding wave of two layer woven 

fabrics (B4-B7) with varying stitching distance are shown in Figure 29. The binding wave in 

two layer stitched plain woven fabric can be analyzed and approximated in different methods. 

These methods are described further. 

 

Figure 29. Cross-sectional image of binding wave of two layer woven fabrics (B4-B7) in 

longitudinal cross-section with varying stitching distance along warp thread (left side: theoretical 

simulation of cross-section, right side: real cross-section of woven fabric) 

6.4.1 FS approximation of stitching section of binding wave of two layer stitched 

woven fabric in cross-section 

The geometry of two layer stitched woven fabrics with plain weave has been divided into 

stitching and non-stitching section as shown in Figure 8. When the number of stitching points 

decreasing from (B4) to (B7), it increases the forces inside the thread during weaving. So, we 

need to analyze that whether the deformation is different at stitching points or not. The linear 

description of binding wave in two layer stitched fabric can be observed in Figure 8 as well. 

This description allows us to evaluate the warp and weft threads in the interlacing at stitching 

sections. 

The experimental binding wave of samples (B4-B7) and its approximation using equation 

(14) in longitudinal cross-section can be observed in Figure 30 to Figure 33 for stitching 

sections.  It also contains the spectral characteristics of binding wave. Each of the binding 

waves obtained by Fourier series (where 𝛼 = 1,2,3, .. ) has its own spectral characteristic 

which evaluates the course of the binding wave in terms of geometry, eventual deformation 
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and random changes, resulted from the stress of individual threads. It can be observed in all 

figures that the approximation done by Fourier series fits well to the experimental binding 

wave. The deformation is slightly changing in stitching sections of binding wave in two layer 

woven samples (B4-B7), which can be analyzed accurately by the harmonic analysis. The 

shape of the binding wave is not similar in all cases. The spectral characteristics obtained by 

theoretically and experimentally approximated binding wave has been calculated using 

equation (27) for stitched sections. The first harmonic component (A1) represents the 

amplitude of the first binding wave, second harmonic component (A2) is the difference 

between first and second binding wave and so on. The difference between the binding waves 

has been rapidly decreasing, which shows that it is not necessary to use higher number of 

harmonic components to get the better approximation. 

 
Figure 30. Fourier approximation and spectral characteristics of binding wave in stitched section of 

binding wave for sample (B4) 

The amplitude of the first harmonic component (A1) for the first binding wave is increasing 

in all four cases from (B4) to (B7). All the input parameters are same for these fabric samples 

except of the stitch distance, which explains the effect of stitch distance in two layer woven 

structure is significant on the deformation of the binding wave. As the amplitude of first 

harmonic component (A1) is increasing from (B4) to (B7), it means the deformation is 

decreasing in stitching section. In other words, it can also be said that the woven fabric 

sample (B4) possess maximum deformation of binding wave, while woven fabric sample 

(B7) possess less deformation of binding wave as compared to other fabric samples. This 

change in amplitude or deformation is due to varying number of stitch points in all woven 

structures. When there are more number of stitch points and stitch distance is short, then 

more length of stitching yarn will be required by the same input weaver beam. Therefore, the 

tension on stitching yarn increases, which result in higher deformation of binding yarn in the 
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stitching area. The second harmonic component (A2) gives the information about the rigidity 

of woven fabric, when the difference between first and second binding wave is higher, then 

this value is high. The amplitude of harmonic components after (A1) is not high which shows 

good approximation and only few terms will be required for better approximation. 

It can also be observed in Figure 30 to Figure 33 that our predicted (theoretical) values of 

harmonic components obtained by Fourier model are in accordance with the experimental 

spectral characteristics values. First and second binding waves obtained using theoretical 

model are identical in the longitudinal cross-section. Similarly, the third and fourth binding 

waves are also identical and so on.  As these binding waves are identical, so the difference 

between them is zero in spectral characteristics. In the similar way, the difference between 

the other binding waves has been calculated, which is continuously decreasing. 

  
Figure 31. Fourier approximation and spectral characteristics of binding wave in stitched section of 

binding wave for sample (B5) 

  
Figure 32. Fourier approximation and spectral characteristics of binding wave in stitched section of 

binding wave for sample (B6) 

In Figure 34, the binding wave for two layer woven fabrics at stitching area obtained by the 

cross-sectional image analysis of real fabric can be observed. It can be analyzed that there is a 
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slight change in the course of binding wave in all woven fabric samples, which depicts 

different amplitudes and deformations for different fabric structures at stitching area. This 

difference has been calculated and explained by the harmonic analysis of experimental 

binding wave as well and can be observed with a slight increase in amplitude of first 

harmonic component from (B4) to (B7). 

  
Figure 33. Fourier approximation and spectral characteristics of binding wave in stitched section of 

binding wave for sample (B7) 

 
Figure 34. Shape deformation of binding wave and spectral characteristics of binding wave of two 

layer woven fabrics at stitching area 

6.4.2 FS approximation of whole binding wave of two layer stitched woven fabric in 

cross-section 

It is not possible to use the approximation performed on separate parts of binding wave for 

the evaluation of properties of whole binding wave because we need the information about 

the whole interlacing, so we are approximating the whole binding wave as well. The linear 

description by means of straight lines for two layer stitched woven fabric has been shown in 

Figure 8 in the fabric geometry. The FS approximation of two layer stitched woven fabrics 



 

 29  
 

has been performed using equation (19). The linear description of the binding wave in 

longitudinal cross-sections for fabric sample (B4) is shown in Figure 35.  

 
Figure 35. Graphical illustration of linear description of central line of thread in cross-section of 

two layers stitched woven fabric for sample (B4) in longitudinal cross-section 

The real cross-section, experimental binding waves for the sample (B4), its approximation 

and spectral characteristics can be observed in Figure 36. It can be observed that the 

approximation done by Fourier series fits well to the experimental binding wave after certain 

number of components and our theoretical model for two layer stitched woven fabric samples 

holds good with the experimental binding wave.  

  
Figure 36. Cross-section of real binging wave of woven fabric, Fourier approximation and spectral 

characteristics of binding wave (B4) in longitudinal cross-section 

The spectral characteristics obtained by theoretically and experimentally approximated 
binding wave has been calculated using equation (27) for two layer stitched woven fabric 
(B4). It can be observed in Figure 36 that there is not big difference in the spectral 
characteristics obtained by theoretical and experimental data. It can also be observed the that 
the amplitude of first harmonic component (A1) is different from the one obtained by FS 
analysis of stitched portion, as shown in Figure 34, as these values are for both stitched and 
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non-stitched sections. The amplitude of second harmonic component (A2) is quite high as the 
difference between first and second binding wave is high, while the amplitude of remaining 
components is not so high This explains that a better approximation and fitting by Fourier 
model can be obtained by using just few number harmonic components and in this case, it is 
F3(x). 

6.5 Influence of plain weave repeat in non-stitched part of binding wave of two-layer 
stitched woven fabric in cross-section using Fourier series 

In this chapter we want to present influence of 

number of repeats of plain weave in binding 

wave on the spectral characterization of Fourier 

spectrum. For modelling of geometry of cross-

section of woven fabric, the Fourier series is still 

used with straight lines description of central line 

of the binding wave. For experimental part of 

work the fabric design of two layer woven 

fabrics (B4-B7) with varying stitching distance 

(period) and repeat size are shown in Figure 37. 

In the sample (B4) the repeat size is smallest 

which is one-time, while in (B5) to (B7) it is 

three, five and seven-times respectively. So, we 

have a possibility to use this plain weave by ‘n’ times and we can assume that which shape 

and spectral characteristics we will obtain. The non-stitching section which is just next to the 

stitching section, can be continuous depending upon the distance between two stitch points or 

repeat size. There will be higher elongation in fabric when the stitch points per meter are high 

and this can be used as reinforcement in composites where we need higher deformation 

instead of rigidity. So, it is necessary to understand the effect of stitch distance or repeat size 

by FS approximation and spectrum analysis. 

The linear description for two layer fabrics has already been describes in Figure 8 and Figure 

9 in the fabric geometry. This description allows us to evaluate the warp and weft threads in 

the interlacing at stitching and non-stitching sections for a complete binding repeat. For the 

approximation of a two layer woven fabric (B4-B7) by FS, the period of the periodic function 

has been taken as P = T = 4A, 8A, 12A, 16A respectively. 

 
Figure 37. Geometry of two layer woven 

fabric samples (B4-B7) with varying repeat 

size 
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The FS approximation of two layer stitched woven fabrics has been performed using equation 

(19). The approximation of the complete repeat of all woven fabric samples (B4-B7) and 

their spectral characteristics can be observed in the Figure 38 to Figure 41. It can be observed 

that the approximation done by Fourier series is in accordance with the shape of the binding 

wave in fabric sample after certain number of components and our theoretical model for two 

layer stitched woven fabric samples holds good for different repeat sizes as well. It is 

continuous and can be applied to bigger repeat sizes. The woven fabric (B4) has the smallest 

repeat size as it contains only one-time plain woven fabric in non-stitching section, while the 

sample (B5) contains three-times, sample (B6) five-times and sample (B7) holds seven-times 

plain woven fabric in non-stitching section. Fourier series is an expansion of a periodic 

function F(x) in terms of an infinite sum of sines and cosines. In the Figure 38 F3(x) is the 

sum of five terms of Fourier series to get better approximation. It can be observed in Figure 

38 to Figure 41 that when the repeat size is increasing from (B4) to (B7), the number of 

binding waves required to get a better approximation as per woven structure are also 

increasing, so the repeat size has direct relation with the number of binding or crimp waves.  

 

 
Figure 38. Graphical illustration of geometry of cross-section for one-time repeat of plain woven 

fabric in non-stitching section, Fourier approximation and spectral characteristics of complete repeat 

of binding wave (B4) in longitudinal cross-section 

Moreover, it can be analyzed accurately by the harmonic analysis. Each of the binding waves 

obtained by Fourier series (where 𝛼 = 1,2,3, .. ) has its own spectral characteristic which 

evaluates the course of the binding wave. The spectral characteristics of all the two layer 

fabric sample (B4-B7) in longitudinal cross-section has been calculated using equation (27). 

The first harmonic component (A1) represents the amplitude of the first binding wave, while 

second harmonic component (A2) is the difference between first and second binding wave. In 

the similar way, the difference between the other binding waves has been calculated and 
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represented in figures for fifteen harmonic components. Moreover, it has also been observed 

that just by adding few number of sines and cosines series we can get a better approximation 

of binding wave. 

 

  
Figure 39. Graphical illustration of geometry of cross-section for three-times repeat of plain woven 

fabric in non-stitching section, Fourier approximation and spectral characteristics of binding wave 

(B5) in longitudinal cross-section 

 

 

 
Figure 40. Graphical illustration of geometry of cross-section for five-times repeat of plain woven 

fabric in non-stitching section, Fourier approximation and spectral characteristics of binding wave 

(B6) in longitudinal cross-section 

It can be observed in Figure 38 to Figure 41 in the harmonic analysis that the amplitude of 
second component (A2) is quite high for woven sample (B4), fourth component (A4) for 
woven sample (B5), sixth component (A6) for woven sample (B6) and eighth component 
(A7) for woven sample (B7). After this highest amplitude the approximated crimp wave holds 
good with the sample crimp wave. We are getting this highest amplitude component after the 
exact number of plain weave units for each woven fabric sample. So, it can be concluded that 

http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/Cosine.html
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when the repeat size is increasing from (B4) to (B7), the number of binding waves required to 
get a better approximation as per woven structure are also increasing, hence the repeat size is 
directly proportional to the number of harmonic components. 

 

 

 
Figure 41. Graphical illustration of geometry of cross-section for seven-times repeat of plain woven 

fabric in non-stitching section, Fourier approximation and spectral characteristics of binding wave 

(B7) in longitudinal cross-section 

7 Evaluation of results and new finding 
The following conclusions can be drawn from this study. 

 The work is focused on mathematical expression and description of geometry of binding 

wave of single as well as two-layer stitched woven fabric using Fourier series. For 

mathematical definition of binding wave as an input function f(x) in Fourier series, the 

linear description of the central line of the binding wave was used. Based on verification 

of model with real binding wave, the validity of the model is confirmed and verified. 

 

 Fourier series analysis describe the whole binding wave repeat contrary to present models 

which describes only one interlacing point.  Using Fourier series modelling, we can 

obtain not only the description of geometry of binding wave (length of binding wave or 
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crimp of threads) but also spectral characterization for analyzing the individual 

components, which can react on deformation of the shape of binding wave. 

 The final shape of binding wave of two layer stitched woven fabric is given by the 

definition of number of repeats of plain weave in interlacing in cross-section. The 

influence of repeats of plain weave in binding wave on the spectral characterization of 

Fourier spectrum was evaluated. 

 FS approximation can be used for analysis of cross-section as well as the deformation of 

shape of binding wave in the single layer plain woven fabric (which is possible to use as 

reinforcement structure) and also for two layer plain woven structures where we have 

connections of the individual layers by the varying stitching points. The model has been 

validated with the experimental analyses of binding wave in cross-section of single layer 

and two layer stitched woven fabric. 

 The effect of stitch distance (repeat size) in two layer woven structure has been analyzed 

in stitching section. The amplitude of harmonic component is increasing from (B4) to 

(B7). The fabric with more number of stitching points (B4) retains more deformation.  

 Experimental analysis shows that the approximation done by the proposed theoretical 

model (idea) for description of geometry of cross-section of woven multifilament fabric 

structures (single and two layer stitched woven fabrics with plain weave) is in accordance 

with experimental spectrum. Theoretical model for description of mutual interlacing of 

threads in two layer stitched woven structure, it is possible to use it as analytical 

prediction of geometry of woven structure, and shape of the binding wave. 

 By predicting the geometry of the binding wave in two layers stitched woven fabric, it is 

possible to use it for the calculation of basic properties of woven fabric (length of threads 

in binding wave, crimp of threads, thickness of woven fabric, etc.). 

 The model for description of geometry of binding wave in cross-section can be extended 

for the other weaves such as twill or satin weaves with longer floats, bigger repeat size 

and more number of layers. The spectrum will be different in that case. 

 The deformation of the shapes of binding waves of the individual layers of the multilayer 

woven fabrics can be compared with the deformation of the binding waves in the 

individual layers in composites. 
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