Martin Fibrich

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schém laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

ELI beamlines

Laserové a optické technologie

Martin Fibrich¹

¹Fyzikální ústav Akademie věd ČR, v.v.i

20.3.2012

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Outline

Základní pojmy

Elektromagnetické spektrum Princip fungování laserů Ultrakrátké pulzy

2 ELI beamlines

Struktura budovy Blokové schéma laseru Základní technologie

3 Výzkumné programy

Experimentální místnosti Cílové aplikace Výkonné laserové systémy ve světě

Martin Fibrich

beamlines

Elektromagnetické spektrum

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

 Elektromagnetické záření všech možných vlnových délek

Martin Fibrich

beamlines

Elektromagnetické spektrum

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

- Elektromagnetické záření všech možných vlnových délek
- Částicový charakter EM záření ⇒ fotony

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungováni laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

- Elektromagnetické záření všech možných vlnových délek
- Částicový charakter EM záření ⇒ fotony
- Fotony kvanta EM záření s charakteristickou energií

Energie fotonu

$$E = h\nu = hrac{c}{\lambda}$$
;

heamlines

h – Planckova konstanta, ν – frekvence, c – rychlost světla, λ – vlnová délka

Elektromagnetické spektrum

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě beamlines

Elektromagnetické spektrum

Časové měřítko

- Je rutina generovat pulzy $< 1\,{
 m ps}\,(10^{-12}\,{
 m s})$
- Vědci na světě generují pulzy v řádu femtosekund (10⁻¹⁵ s)
- Takový puls se má k jedné minutě jako se má minuta k době trvání vesmíru

http://public.me.com/ricktrebino

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě beamlines

Elektromagnetické spektrum

Časové měřítko

- $^{-}$ Je rutina generovat pulzy $< 1\,$ ps (10 $^{-12}\,$ s)
- Vědci na světě generují pulzy v řádu femtosekund (10⁻¹⁵ s)
- Takový puls se má k jedné minutě jako se má minuta k době trvání vesmíru

http://public.me.com/ricktrebino

 $\blacktriangleright~1$ ns pulz ightarrow 30 cm balík fotonů, 1 fs pulz ightarrow 0.3 μ m balík fotonů

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Elektromagnetické spektrum

Časové měřítko

- $^{-}$ Je rutina generovat pulzy $< 1\,$ ps (10 $^{-12}\,$ s)
- Vědci na světě generují pulzy v řádu femtosekund (10⁻¹⁵ s)
- Takový puls se má k jedné minutě jako se má minuta k době trvání vesmíru

http://public.me.com/ricktrebino

ightarrow 1 ns pulz ightarrow 30 cm balík fotonů, 1 fs pulz ightarrow 0.3 μ m balík fotonů

Využití

Měření rychlých procesů, snímání na dálku (remote sensing), mikroobrábění, ...

projekt podporovaný:

Martin Fibrich

Generace laserového záření

Absorpce, emise, stimulovaná emise

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

laseru

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

projekt podporovaný:

Martin Fibrich

Generace laserového záření

Absorpce, emise, stimulovaná emise

projekt podporovaný:

Martin Fibrich

Generace laserového záření

Absorpce, emise, stimulovaná emise

Martin Fibrich

Generace laserového záření

Absorpce, emise, stimulovaná emise

Martin Fibrich

beamlines

Generace laserového záření

Absorpce, emise, stimulovaná emise

Martin Fibrich

Generace laserového záření

Absorpce, emise, stimulovaná emise

pro inovace

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáli místnosti

Cílové aplikace

Výkonné laserové systémy ve světě beamlines

Generace laserového záření

Aktivní prostředí dle laserových hladin

3-hladinové schéma

4-hladinové schéma Kvazi-3-hladinové schéma

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikac

Výkonné laserové systémy ve světě

Generace laserového záření

Aktivní prostředí dle laserových hladin

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Generace laserového záření

Aktivní prostředí dle laserových hladin

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Generace laserového záření

Základní části laseru

Aktivní prostředí (pevná látka, kapalina, plyn, polovodič, plasma)

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Generace laserového záření

Základní části laseru

- Aktivní prostředí (pevná látka, kapalina, plyn, polovodič, plasma)
- Čerpání (nekoherentní, koherentní)

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

- Struktura budov Blokové schéma
- laseru
- Základní technologie
- Výzkumné programy
- Experimentáln místnosti
- Cílové aplikace
- Výkonné laserové systémy ve světě

Generace laserového záření

Základní části laseru

- Aktivní prostředí (pevná látka, kapalina, plyn, polovodič, plasma)
- Čerpání (nekoherentní, koherentní)
- Laserový rezonátor = kladná zpětná vazba

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Bloková ccháma

laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Generace laserového záření

Základní části laseru

- Aktivní prostředí (pevná látka, kapalina, plyn, polovodič, plasma)
- Čerpání (nekoherentní, koherentní)
- Laserový rezonátor = kladná zpětná vazba
- Chlazení

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagneticke spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

 Kratším pulzům odpovídá nutně větší šířka generovaného spektra; svázáno Fourierovou transformací

- Nejkratší pulzy generované přímo z laseru jsou okolo 5 fs Ti:safír 800 nm
- Kratších pulzů (v řádech attosekund) lze dosáhnout pomocí HHG v nelineárním prostředí
- Díky krátké době trvání lze dosáhnout po krátkou dobu neuvěřitelně vysokých výkonů i při nízké energii v pulzu
 - např. 10 mJ / 10 fs = 1 TW (odpovídá asi 1000 bloků Temelína, a to z laseru, který se vejde na větší stůl!)
- V ELI Beamlines se počítá s lasery o špičkových výkonech až 10 PW!

Martin Fibrich

Základní pojmy

Elektromagneticke spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě beamline

- Generace laserovými oscilátory v režimu synchronizace módů (mode-locking)
- Kratším pulzům odpovídá nutně větší šířka generovaného spektra; svázáno Fourierovou transformací
- Nejkratší pulzy generované přímo z laseru jsou okolo 5 fs Ti:safír 800 nm
- Kratších pulzů (v řádech attosekund) lze dosáhnout pomocí HHG v nelineárním prostředí
- Díky krátké době trvání lze dosáhnout po krátkou dobu neuvěřitelně vysokých výkonů i při nízké energii v pulzu
 - např. 10 mJ / 10 fs = 1 TW (odpovídá asi 1000 bloků Temelína, a to z laseru, který se vejde na větší stůl!)
- V ELI Beamlines se počítá s lasery o špičkových výkonech až 10 PW!

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě beamline

- Generace laserovými oscilátory v režimu synchronizace módů (mode-locking)
- Kratším pulzům odpovídá nutně větší šířka generovaného spektra; svázáno Fourierovou transformací
 - Nejkratší pulzy generované přímo z laseru jsou okolo 5 fs Ti:safír 800 nm
 - Kratších pulzů (v řádech attosekund) lze dosáhnout pomocí HHG v nelineárním prostředí
 - Díky krátké době trvání lze dosáhnout po krátkou dobu neuvěřitelně vysokých výkonů i při nízké energii v pulzu
 - např. 10 mJ / 10 fs = 1 TW (odpovídá asi 1000 bloků Temelína, a to z laseru, který se vejde na větší stůl!)
 - V ELI Beamlines se počítá s lasery o špičkových výkonech až 10 PW!

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě beamline

- Generace laserovými oscilátory v režimu synchronizace módů (mode-locking)
- Kratším pulzům odpovídá nutně větší šířka generovaného spektra; svázáno Fourierovou transformací
 - Nejkratší pulzy generované přímo z laseru jsou okolo 5 fs Ti:safír 800 nm
 - Kratších pulzů (v řádech attosekund) lze dosáhnout pomocí HHG v nelineárním prostředí
 - Díky krátké době trvání lze dosáhnout po krátkou dobu neuvěřitelně vysokých výkonů i při nízké energii v pulzu
 - např. 10 mJ / 10 fs = 1 TW (odpovídá asi 1000 bloků Temelína, a to z laseru, který se vejde na větší stůl!)
 - V ELI Beamlines se počítá s lasery o špičkových výkonech až 10 PW!

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

- Generace laserovými oscilátory v režimu synchronizace módů (mode-locking)
- Kratším pulzům odpovídá nutně větší šířka generovaného spektra; svázáno Fourierovou transformací
 - Nejkratší pulzy generované přímo z laseru jsou okolo 5 fs Ti:safír 800 nm
 - Kratších pulzů (v řádech attosekund) lze dosáhnout pomocí HHG v nelineárním prostředí
- Díky krátké době trvání lze dosáhnout po krátkou dobu neuvěřitelně vysokých výkonů i při nízké energii v pulzu
 - např. 10 mJ / 10 fs = 1 TW (odpovídá asi 1000 bloků Temelína, a to z laseru, který se vejde na větší stů!!)
- V ELI Beamlines se počítá s lasery o špičkových výkonech až 10 PW!

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě beamline

- Generace laserovými oscilátory v režimu synchronizace módů (mode-locking)
- Kratším pulzům odpovídá nutně větší šířka generovaného spektra; svázáno Fourierovou transformací
 - Nejkratší pulzy generované přímo z laseru jsou okolo 5 fs Ti:safír 800 nm
 - Kratších pulzů (v řádech attosekund) lze dosáhnout pomocí HHG v nelineárním prostředí
- Díky krátké době trvání lze dosáhnout po krátkou dobu neuvěřitelně vysokých výkonů i při nízké energii v pulzu
 - např. 10 mJ / 10 fs = 1 TW (odpovídá asi 1000 bloků Temelína, a to z laseru, který se vejde na větší stůl!)
- V ELI Beamlines se počítá s lasery o špičkových výkonech až 10 PW!

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

- Generace laserovými oscilátory v režimu synchronizace módů (mode-locking)
- Kratším pulzům odpovídá nutně větší šířka generovaného spektra; svázáno Fourierovou transformací
 - Nejkratší pulzy generované přímo z laseru jsou okolo 5 fs Ti:safír 800 nm
 - Kratších pulzů (v řádech attosekund) lze dosáhnout pomocí HHG v nelineárním prostředí
- Díky krátké době trvání lze dosáhnout po krátkou dobu neuvěřitelně vysokých výkonů i při nízké energii v pulzu
 - např. 10 mJ / 10 fs = 1 TW (odpovídá asi 1000 bloků Temelína, a to z laseru, který se vejde na větší stůl!)
- V ELI Beamlines se počítá s lasery o špičkových výkonech až 10 PW!

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungováni laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáli místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

beamlines

Synchronizace módů (Mode-locking)

out of in out of phase phase phase

Time

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungováni laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáli místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

heamlines

Generace fs pulzů

Synchronizace módů (Mode-locking)

Irradiance vs. time

Počet oscilujících módů

$$N = \frac{\Delta \omega_g}{\Delta \omega} = \Delta \omega_g \frac{2L_{res}}{c}$$

 $\Delta \omega_g$ – šířka zisku nad prahem $\Delta \omega$ – vzdálenost módů L_{res} – délka rezonátoru Délka pulzu, špičkový výkon $\Delta t \sim \frac{1}{N}$ $P_{peak} = N \times P_{mean}$ N - počet oscilujících módů

Time-bandwidth product

Time ------

$\Delta t \Delta \nu = K$

 Δt – délka pulzu $\Delta
u$ – spektrální šířka pulzu K – konst. závislá na tvaru pulzu

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě beamlines

Zesilování fs pulzů

 $\mathsf{CPA}=\mathsf{Chirped}\ \mathsf{Pulse}\ \mathsf{Amplification}$

Problém zesilování ultrakrátkých pulzů

- Ultrakrátké pulzy se vyznačují vysokou intenzitou záření
- Zesilování přímou cestou je limitováno prahem poškození optických komponent (zesilovacího prostředí)

Martin Fibrich

Základní pojmy

Elektromagneticke spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Řešení

Zesilování fs pulzů

 $\mathsf{CPA}=\mathsf{Chirped}\ \mathsf{Pulse}\ \mathsf{Amplification}$

Problém zesilování ultrakrátkých pulzů

- Ultrakrátké pulzy se vyznačují vysokou intenzitou záření
- Zesilování přímou cestou je limitováno prahem poškození optických komponent (zesilovacího prostředí)

Časový chirp

 Běžně lze snížit intenzitu v řádu tisíců

Martin Fibrich

Základní pojmy

Elektromagneticke spektrum

Princip fungováni laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Zesilování fs pulzů

CPA = Chirped Pulse Amplification

Martin Fibrich

Základní pojmy

Elektromagneticke spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schém laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Disperzní prvky

Disperzní prvky – závislost fázové (grupové) rychlosti na frekvenci

beamlines

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Zesilování fs pulzů

Disperzní prvky

Disperzní prvky – závislost fázové (grupové) rychlosti na frekvenci

Hranoly

- Digrakční mřížky
- Chirpovaná zrcadla
- Optická vlákna, opt. prostředí s n = n(ω)

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Zesilování fs pulzů

Disperzní prvky

Disperzní prvky – závislost fázové (grupové) rychlosti na frekvenci

Hranoly

- Digrakční mřížky
- Chirpovaná zrcadla
- Optická vlákna, opt. prostředí s n = n(ω)

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Zesilování fs pulzů

Disperzní prvky

- Disperzní prvky závislost fázové (grupové) rychlosti na frekvenci
- Hranoly
- Digrakční mřížky
- Chirpovaná zrcadla
- Optická vlákna, opt. prostředí s n = n(ω)

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov

Blokové schéma laseru

Základní technologie

- Výzkumné programy
- Experimentální místnosti
- Cílové aplikace

Výkonné laserové systémy ve světě

Zesilování fs pulzů

Disperzní prvky

- Disperzní prvky závislost fázové (grupové) rychlosti na frekvenci
- Hranoly
- Digrakční mřížky
- Chirpovaná zrcadla
- Optická vlákna, opt. prostředí s $n = n(\omega)$

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Zesilování fs pulzů

Disperzní prvky

- Disperzní prvky závislost fázové (grupové) rychlosti na frekvenci
- Hranoly
- Digrakční mřížky
- Chirpovaná zrcadla
- Optická vlákna, opt. prostředí s $n = n(\omega)$

 Pro vysokovýkonové systémy se většinou používají difrakční mřížky v reflexním módu

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

laseru

Zakladni technologi

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

beamlines

⁽⁰2)

Zesilování fs pulzů Techniky SFG, SHG a OP(CP)A

Sum Frequency Generation

> 03 ₩₩

Second Harmonic Generation

Optical Parametric (Chirped Pulse) Amplification

Martin Fibrich

Ultrakrátké pulzy

Zesilování fs pulzů Techniky SFG, SHG a OP(CP)A

projekt podporovaný:

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

Amplification

Martin Fibrich

Základní pojmy

Elektromagneticke spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

Základní technologie

Výzkumné programy

Experimentáli místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Zesilování fs pulzů Techniky SFG, SHG a OP(CP)A

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

 ω_{1,k_1}

SHG

<u>ω</u>ι

 Θ_1

ω2,k2

Zesilování fs pulzů

SHG a OPCPA – průchod prostředím

Zákon zachování energie SHG: $\omega_2 = 2\omega_1$ OPCPA: $\omega_3 = \omega_1 - \omega_2$

Zákon zachování hybnosti Fázový synchronismus SHG: $\vec{k}_2 = 2\vec{k}_1$ OPCPA: $\vec{k}_3 = \vec{k}_1 - \vec{k}_2$ signal k³

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Zesilování fs pulzů

SHG a OPCPA – průchod prostředím

Martin Fibrich

Základní pojmy

Elektromagnetic spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Struktura budovy

- Monolitická struktura (laserové a experimentální technologie)
- Podpůrné technologie (vakuové pumpy, klimatizace, vedlejší laboratoře, ...)

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagneticke spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Struktura budovy

Umístění laserů v budově

6 experimentálních hal

Martin Fibrich

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Blokové schéma laseru

projekt podporovaný:

Martin Fibrich

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Blokové schéma laseru

projekt podporovaný:

Martin Fibrich

Elektromagneticke spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

- Základní technologie
- Výzkumné programy
- Experimentáln místnosti
- Cílové aplikace
- Výkonné laserové systémy ve světě

beamlines

Front-end

a synchronizace laserových systémů

Synchronizace laserových systémů

seed laser PP-MgO:LN HR Ti:Sapphire Carrier Envelope Phase Stabilization Oscillator 600-1060 nm stretcher grating 2 grating 1 ns2 fiber amplifier 0000) Pump Diod regenerative amplifier fiber coupled pump diodes HR disk amplifier HR HR compressor grating grating 2 output

Front-end — Počátek všeho

Thomas Metzger, MPQ

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagneticke spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

- Základní technologie
- Výzkumné programy
- Experimentáln místnosti
- Cílové aplikace
- Výkonné laserové systémy ve světě

beamlines

Front-end

a synchronizace laserových systémů

Front-end — Počátek všeho

Thomas Metzger, MPQ

Synchronizace laserových systémů

- Unikátní na projektu ELI Beamlines v jedné budově několik výkonných fs laserů s odlišnými parametry
- Snaha dosáhnout i vzájemné časové synchronizace mezi všemi lasery v budově a to na úrovni až desítek fs v experimentálních halách
- Běžná elektronická signalizace (ns) zdaleka nestačí
- fs synchronizace lze dosáhnout pouze opticky pomocí optických cross-korelátorů

projekt podporovaný:

Martin Fibrich

Základní pojmy

- Elektromagneticke spektrum
- Princip fungování laserů
- Ultrakrátké pulzy

ELI beamlines

- Struktura budovy Blokové schéma laseru
- Základní technologie
- Výzkumné programy
- Experimentá
- Cílové polikaci
- Výkonné laserové systémy ve světě

Výhody

Účinné chlazení (tloušť ka 100–900 μm)
 Téměř nedochází ke vzniku tepelné čočky
 kHz opakovací frekvence i vysoké energie
 Výborná kvalita svazku a stabilita generace
 "Power scalability"≈ d²

beamlines

projekt podporovaný:

Technologie tenkých disků

Martin Fibrich

Základní pojmy

- Elektromagneticke spektrum
- Princip fungování laserů
- Ultrakrátké pulzy

ELI beamlines

- Struktura budovy Blokové schéma laseru
- Základní technologie
- Výzkumné programy
- Experimentá
- Cílové polikaci
- Výkonné laserové systémy ve světě

Výhody

Nevýhody

Nízký zisk na 1 průchod, proto

beamlines

projekt podporovaný:

Technologie tenkých disků

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov Blokové schéma

Základní technologie

Výzkumné programy

Evnerimentá

místnosti

Výkonné laserové systémy ve světě

Technologie tenkých disků

Aktivní prostředí Yb:YAG

Proč ionty Yb?

- Poměrně dlouhá doba života el. na horní laserové hladině (1-2 ms) ⇒ Q-spínání
- Absorpční pásy 940 nm, 969 nm čerpání komerčně dostupnými las. diodami ⇒ účinnost

projekt podporovaný:

■2F7/2

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov Blokové schéma

Základní technologie

Výzkumné programy

Evnerimentá

místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Technologie tenkých disků

Aktivní prostředí Yb:YAG

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov Blokové schéma

Základní technologie

Výzkumné programy

Evporimentá

místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Technologie tenkých disků

Aktivní prostředí Yb:YAG

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov Blokové schéma

Základní technologie

Výzkumné programy

Evnerimentá

místnosti

Výkonné laserové systémy ve světě

Technologie tenkých disků

Aktivní prostředí Yb:YAG

Proč ionty Yb? Zjednodušené schéma energetických hladin Yb[.]YAG Velice iednoduchá struktura ${}^{2}F_{5/2}$ elektronických hladin – pouze 2 pásy \Rightarrow Žádná absorpce z excitovaného stavu ► "Excited-state absorption" Minimum nežádoucích cross-relavačních procesů Malý kvantový defekt (poměr λ_l / λ_p) 050 nm 103<u>0 nm</u> 940 nm 969 nm ⇒ vysoká laserová účinnost, výrazné snížení tepelných efektů \triangleright Dostatečně široké spektrum zisku \Rightarrow Poměrně dlouhá doba života el na horní. 2F7/2

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov Blokové schéma

Základní technologie

Výzkumné programy

Evnerimentá

Clauf antiban

Výkonné laserové systémy ve světě

Technologie tenkých disků

Aktivní prostředí Yb:YAG

Zjednodušené schéma energetických hladin Yb[.]YAG ${}^{2}F_{5/2}$ 050 nm 103<u>0 nm</u> 940 nm 969 nm 2F7/2

Proč ionty Yb?

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov Blokové schéma

Základní technologie

Výzkumné programy

Evnerimentá

místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Technologie tenkých disků

Aktivní prostředí Yb:YAG

Zjednodušené schéma energetických hladin Yb[.]YAG ${}^{2}F_{5/2}$ 050 nm 103<u>0 nm</u> 940 nm 969 nm 2F7/2

Proč ionty Yb?

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov Blokové schéma

Základní technologie

Výzkumné programy

Evnerimentá

místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Technologie tenkých disků

Aktivní prostředí Yb:YAG

Zjednodušené schéma energetických hladin Yb[.]YAG ${}^{2}F_{5/2}$ 050 nm 103<u>0 nm</u> 940 nm 969 nm ■2F7/2

Proč ionty Yb?

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikaci

Výkonné laserové systémy ve světě

Čerpací systémy OPCPA

Tenkodiskové zesilovače (L1: 10 Tw, 1 kHz)

Regenerační zesilovač (150 průchodů tenkým diskem)

Víceprůchodový zesilovač 20 průchodů tenkým diskem)

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikaci

Výkonné laserové systémy ve světě

beamlines

Čerpací systémy OPCPA

Tenkodiskové zesilovače (L1: 10 Tw, 1 kHz)

Regenerační zesilovač (150 průchodů tenkým diskem)

Víceprůchodový zesilovač (20 průchodů tenkým diskem)

T. Metzger, MPQ

projekt podporovaný:

Martin Fibrich

Základní technologie

Optical window

ump light

Čerpací systémy OPCPA

- Technologie vyvíjená v Anglii RAL/STFC umožňující generaci až 100 J v pulzu při vysoké opakovací frekvenci 10Hz
- Podobná technologie demonstrována i v LLNL: 60 J/10 Hz Mercury laser
- 2 zesilovače, každý 8 disků (Yb:YAG) s rozdílnou koncentrací Yb-iontů
- Kryogenní chlazení 160 K
- Struktura 1 deskv
 - E1 Yb:YAG oblast, část z ní
 - ► E2 Cr:YAG oblast (3cm) =

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamline

Struktura budovy Blokové schéma

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Bi beamlines

Čerpací systémy OPCPA

Technologie multideskových kryogenně chlazených zesilovačů (L2: 1-2 Pw, 10 Hz)

 E_3

Ε,

-150 K

Yb:YAG Slabs

- Technologie vyvíjená v Anglii RAL/STFC umožňující generaci až 100 J v pulzu při vysoké opakovací frekvenci 10Hz
- Podobná technologie demonstrována i v LLNL: 60 J/10 Hz Mercury laser
- 2 zesilovače, každý 8 disků (Yb:YAG) s rozdílnou koncentrací Yb-iontů
- Kryogenní chlazení 160 K
- Struktura 1 desky
 - E1 Yb:YAG oblast, část z ní čerpána
 - E2 Cr:YAG oblast (3cm) = absorpční oblast, k potlačení ASE
 - E3 povrchová úprava

Martin Fibrich

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Čerpací systémy OPCPA

Technologie multideskových kryogenně chlazených zesilovačů

beamlines

projekt podporovaný:

Martin Fibrich

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáli místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Emisní spektra Nd:skel

heamlines

Texas Petawatt laser: 185 J / 130 fs – scalability 1900 J /130 fs

 Aktivní medium – kombinace Nd:skel : vysoká energie a šířka pásma odpovídající <130 fs

Čerpací systémy OPCPA

Kombinace Nd:skel (L3: 2 Pw, 10 Hz; L4: až 10 Pw)

- Ideální délka pulzu a energie na urychlování elektronů
- Laser lze později použít jako čerpací pro OPCPA širokopásmového zesilovače

Martin Fibrich

OPCPA technologie

Základní pojmy

- Elektromagnetick spektrum
- Princip fungování laserů
- Ultrakrátké pulzy

ELI beamlines

- Struktura budovy Blokové schéma laseru
- Základní technologie
- Výzkumné programy
- Experimentální místnosti
- Cílové aplikace
- Výkonné laserové systémy ve světě

projekt podporovaný:

Martin Fibrich

OPCPA technologie

Základní pojmy

- Elektromagnetick spektrum
- Princip fungování laserů
- Ultrakrátké pulzy

ELI beamlines

- Struktura budovy Blokové schéma laseru
- Základní technologie
- Výzkumné programy
- Experimentáln místnosti
- Cílové aplikace
- Výkonné laserové systémy ve světě

$(\Omega)_2$ $\Theta_3 \mathbf{k}_2$ www seed signa idler $\Theta(\mathbf{k})$ $\Theta_2 k_2$ --pump dlor Θ_1 MA $(0)_3$ ~~~~ pump signal

pump k1

Výhody OPCPA oproti CPA s laserovým prostředím

- Velký zisk na jeden průchod ⇒ není potřeba mnohaprůchodová geometrie ⇒ kompaktnost
- Široké frekvenční pásmo zesílení ⇒ generace velmi krátkých pulzů (jednotky fs)
- Generace tepla jen díky slabé parazitní absorpci ⇒ slabé tepelné efekty
- Vysoká kvantová účinnost ⇒ jednoduchá škálovatelnost k vysokým energiím a špičkovým výkonům
- Vysoká kvalita svazku zesílených pulzů
- Parametrický zisk jen po dobu trvání čerpacího pulzu
 ⇒ minimalizace problémů se ztrátou energie díky ASE
 ⇒ vysoký kontrast signál-šum

Martin Fibrich

OPCPA technologie

Základní pojmy

- Elektromagnetick spektrum
- Princip fungování laserů
- Ultrakrátké pulzy

ELI beamlines

- Struktura budovy Blokové schéma laseru
- Základní technologie
- Výzkumné programy
- Experimentáln místnosti
- Cílové aplikace
- Výkonné laserové systémy ve světě

Výhody OPCPA oproti CPA s laserovým prostředím

- Velký zisk na jeden průchod ⇒ není potřeba mnohaprůchodová geometrie ⇒ kompaktnost
- Široké frekvenční pásmo zesílení ⇒ generace velmi krátkých pulzů (jednotky fs)
- Generace tepla jen díky slabé parazitní absorpci ⇒ slabé tepelné efekty
- Vysoká kvantová účinnost ⇒ jednoduchá škálovatelnost k vysokým energiím a špičkovým výkonům
- Vysoká kvalita svazku zesílených pulzů
- Parametrický zisk jen po dobu trvání čerpacího pulzu ⇒ minimalizace problémů se ztrátou energie díky ASE ⇒ vysoký kontrast signál-šum

Nevýhody

- Parametrický zisk jen po dobu trvání čerpacího pulzu
 přesná synchronizace čerpacího a "seed"pulzu
- Potřeba sladit trvání čerpacího a "seed"pulzu pro dosažení max. účinnosti
- Potřeba splnění fázového synchronizmu ⇒ komplikovanější nastavování
- Potřeba vysoké kvality čerpacího svazku

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungován laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentáln místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

heamlines

- Zajišť ují transport svazků mezi jednotlivými zesilovači a optickými prvky laserového řetězce → zobrazují obrazu výstupň apertury předcházejícho zesilovače na vstupň aperturu zesilovače následujícího ⇒ geometricky přenášejí prostorové rozložení intenzity svazku do vhodné roviny následujícího prvku ⇒ téměř optimální vazba energie od jednoho zesilovače k druhému
- Zvětšují průměr laserového svazku tak, aby odpovídal průměru vstupní apertury následujícího zesilovače
- Odstraňují lokáhrí modulace intenzity ⇒ zhlazují profil svazku (zdroj modulací – malé místní nehomogenity laserového média nebo submilimetrová rozptylová centrech na povrchu optických prvků). Pokud nejsou modulace průběžně odstraňovány mohou narůst do velkých hodnot a väžně poškodit optické prvky laseru.

projekt podporovaný:

Distribuce laserových svazků

Prostorové filtry

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungován laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálr místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

heamlines

Distribuce laserových svazků

Prostorové filtry

- Zajišť ují transport svazků mezi jednotlivými zesilovači a optickými prvky laserového řetězce - v zobrazují obrazu výstupní apertury předcházejícího zesilovače na vstupní aperturu zesilovače následujícího ⇒ geometricky přenášejí prostorové rozložení intenzity svazku do vhodné roviny následujícího prvku ⇒ téměř optimální vazba energie od jednoho zesilovače k druhému
- Zvětšují průměr laserového svazku tak, aby odpovídal průměru vstupní apertury následujícího zesilovače
- Odstraňují lokální modulace intenzity ⇒ zhlazují profil svazku (zdroj modulací – malé místní nehomogenity laserového média nebo submilimetrová rozptylová centrech na povrchu optických prvků). Pokud nejsou modulace průběžně odstraňovány mohou narůst do velkých hodnot a väzňe poškodit optické prvky laseru.

Martin Eibrich

Základní technologie

heamlines

- 1. Zajišť ují transport svazků mezi jednotlivými zesilovači a optickými prvky laserového řetězce → zobrazují obrazu výstupní apertury předcházejícího zesilovače na vstupní aperturu zesilovače následujícího ⇒ geometricky přenášejí prostorové rozložení intenzity svazku do vhodné roviny následujícího prvku ⇒ téměř optimální vazba energie od jednoho zesilovače k druhému
- 2. Zvětšují průměr laserového svazku tak, aby odpovídal průměru vstupní apertury následujícího zesilovače
- 3. Odstraňují lokální modulace intenzity ⇒ zhlazují profil svazku (zdroj modulací - malé místní nehomogenity laserového média nebo submilimetrová rozptylová centrech na povrchu optických prvků). Pokud nejsou modulace průběžně odstraňovány mohou narůst do velkých hodnot a vážně poškodit optické prvky laseru.

projekt podporovaný:

EVROPSKÁ LINIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

Distribuce laserových svazků Prostorové filtry

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungováni laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentálr místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Principle stream Output lens D₁ D₁ D₂ = D₁ $\frac{f_1}{f_1}$ Dijet plane d_1 f_2 d_2 Image plane d_2 $\frac{f_2}{f_1}$ (f_1 f_2) d_3 f_4 (f_2) f_3 (f_4) f_2) d_4 $\frac{f_4}{f_1}$ (f_1 f_2) d_4 $\frac{f_4}{f_2}$ (f_1 f_2) d_4 $\frac{f_4}{f_1}$ (f_1 f_2 f_1 $\frac{f_4}{f_1}$ $\frac{f_4}{f_1}$ (f_1 f_2 $\frac{f_4}{f_1}$ $\frac{f_4}{f_1}$ (f_1 f_2 $\frac{f_4}{f_1}$ $\frac{f_4}{f_1}$ (f_1 f_2 $\frac{f_4}{f_1}$ $\frac{f_4}{f_$

- Zajišť ují transport svazků mezi jednotlivými zesilovači a optickými prvky laserového řetězce - v zobrazují obrazu výstupní apertury předcházejícího zesilovače na vstupní aperturu zesilovače následujícího ⇒ geometricky přenášejí prostorové rozložení intenzity svazku do vhodné roviny následujícího prvku ⇒ téměť optimální vazba energie od jednoho zesilovače k druhému
- Zvětšují průměr laserového svazku tak, aby odpovídal průměru vstupní apertury následujícího zesilovače
- Odstraňují lokální modulace intenzity ⇒ zhlazují profil svazku (zdroj modulací – malé místní nehomogenity laserového média nebo submilimetrová rozptylová centrech na povrchu optických prvků). Pokud nejsou modulace průběžně odstraňovány mohou narůst do velkých hodnot a vázně poškodit optické prvky laseru.

Princip prostorové filtrace

peamlines

Vstupní čočka filtru vytváří ve své ohniskové rovině difrakční obrazec = Fourierova transformace rozdělení intenzity světla v předmětové rovině (prostorové frekvenční spektrum)

Vyšší prostorové frekvence ightarrow odpovídají modulacím intenzity malých rozměrů ightarrow ve větších vzdálenostech od osy

Nízkofrekvenční složky prostorového spektra ightarrow odpovídají hladkému profilu svazku ightarrow blízko osy

Vložením clonky s malým otvorem do ohniskové roviny \Rightarrow filtrace vyšších prostorových frekvencí

Výstupní čočka prostorového filtru ightarrow inverzní Fourierova transformace vyfiltrovaného prostorového spektra

projekt podporovaný:

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

Distribuce laserových svazků Prostorové filtry

Martin Fibrich

Základní pojmy

Elektromagneticke spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

beamlines

Distribuce laserových svazků Cassegrain systém pro přenos femtosekundových pulzů

- Pro přenos fs-pulzů \Rightarrow reflexní teleskopy \rightarrow Cassegrain teleskop
- 2 svazky přenášeny jedním systémem
- Optika vibračně oddělena od vakuových komor

Schéma teleskopu

Úvodní inženýrský návrh

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Výzkumné programy

Experimentální místnost E1

Aplikace v materiálovém, biomed. a molekulárním výzkumu

Experimentální místnost E2

Ultrakrátké repetiční XUV a rentgenové zdroje záření

Experimentální místnost E3

Plasmová fyzika a fyzika vysokých hustot energie

Experimentální místnost E4

Fyzika a teorie intenzivních polí

Experimentální místnost E5

Urychlování elektronů

Experimentální místnost E6

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

Fyzikální ústav

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Unikátní vlastnosti centra

Unikátní vlastnosti centra

- Unikátní rozsah energií
- Vysoké opakovací frekvence
- Výborná stabilita mezi pulzy (diodové čerpání a tenké disky)
- Synchronizace všech systémů až na úrovni fs
- Ultrakrátké a synchronizované svazky částic, laserů a rentgenových fotonů o vysokých intenzitách
- Distribuční systém

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetické spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schéma laseru

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Unikátní vlastnosti centra

Unikátní vlastnosti centra

- Unikátní rozsah energií
- Vysoké opakovací frekvence
- Výborná stabilita mezi pulzy (diodové čerpání a tenké disky)
- Synchronizace všech systémů až na úrovni fs
- Ultrakrátké a synchronizované svazky částic, laserů a rentgenových fotonů o vysokých intenzitách
- Distribuční systém

Potenciální aplikace, transfer technologií

- Urychlovače (nové a kompaktní přístupy, e.g. kompaktní FEL)
- Časově rozlišené pump-probe experimenty (fůzní plazma, laboratorní astrofyzika, apod.)
- Medicína (hadronová terapie a tomografie nádorů)
- Bio-chemie (dynamika rychlých přechodových jevů)
- Bezpečnost (nedestruktivní inspekce materiálů)

projekt podporovaný:

Martin Fibrich

Základní pojmy

Elektromagnetick spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budov

Blokové schén laseru

Základní technologie

Výzkumné programy

Experimentálni místnosti

Cílové aplikace

Výkonné laserové systémy ve světě VULCAN Laser RAL STFC, UK (1 PW, 500 J/500 fs, 1054 nm)

Osaka PW module Uni. of Osaka, Japan (1 PW, 500 J/500 fs, 1053 nm)

Texas Petawatt

Uni. of Texas, USA (1 PW, 185 J/130 fs, 1054 nm)

GIST-APRI Petawatt Apri, South Korea (1 PW, 32 J/30 fs, 800 nm)

projekt podporovaný:

beamlines Výkonné laserové systémy ve světě

Martin Fibrich

Elektromagneticke spektrum

Princip fungování laserů

Ultrakrátké pulzy

ELI beamlines

Struktura budovy

Blokové schém laseru

Základní technologie

Výzkumné programy

Experimentální místnosti

Cílové aplikace

Výkonné laserové systémy ve světě

Děkuji za pozornost

projekt podporovaný:

