

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Computer simulations of garments

Assoc. prof. dr. Simona JEVŠNIK

simonajevsnik@gmail.com

Academy of design, associate member of University of Primorska, Faculty of Mechanical Engineering, University of Maribor

PROJEKT OPTIS PRO FT, reg. č.: CZ.1.07/2.2.00/28.0312 JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Universities in Slovenia

University of Ljubljana (http://www.uni-lj.si)

Faculty of Natural Sciences and Engineering-Textile department

Study directions:

- Graphic and Media Technology
- Graphic and Interactive Communication
- •Textile and Clothing Production
- Planning Textiles and Clothing
- •<u>Textile and Fashion Design</u>

Universities in Slovenia

University of Maribor (<u>http://www.um.si</u>) Faculty of Mechanical engineering-Textile department

Universities in Slovenia

University of Primorska (www.upr.si)

ACADEMY OF DESIGN

- Study directions:
- •Textile and clothing design
- •Interior design
- Visual comunication

University of Nova gorica (*WWW.UNG.Si*/)

Image: Constrained set Sales Output field Final set

INTRODUCTION TO VIRTUAL SIMULATION OF GARMNET

Does have the virtual presentation of garment THE FUTURE?

Requirements of clothing industrynowadays

- **Rrequirements of clothing industry**
 - Fast responding on social changes
 - New fashion tendency
 - Short time for development of clothing
 - Low development cost
- The world globalisation allows that design of clothing and production process take place in different parts of the world.
- The "mass production" is no longer suitable for today's modern computerized environment

Some of the problems related to classical garment production:

• The 40-50 days long sampling cycle

The traditional processes of making garments is done in 2D (basic pattern, following by the pattern modeling and graduation process and finally the clothing prototype in order to validate it (3D work) is created.

- Theprototaypes are almost never accepted at the first trial
- The dress doesn't fit to the human body.
- The high expenses development process
- bad communication between the buyer, the merchandiser and the supplier

Outline of lecture

- Introduction to virtual simulation of clothing
- Virtual prototyping of clothing
 - Computer simulation of fabric behaviour
 - Virtual models: parametric and scanned human body
- Application of Virtual prototyping of garments

Virtual simulation in general

The first accurate clothes simulation applications appeared in 1990s.

They integrated numerous computer technologies that included clothes simulations and were focused mostly on modelling, animation of human body motion, interaction between body and clothes as well as its response.

Computer animation of garments has become more and more interdisciplinary and now uses techniques are from different areas such as art, robotics or cinema.

Garment simulation

• <u>Garment simulation on the human body has been a challenging</u> issue in computer graphics for a long time.

• The development of garment simulation in a virtual world is going in two areas:

1. ANIMATION OF GARMENT BEHAVIUOR and 2. ATTEMPTS THE REALISTIC GARMENT SIMULATION

Animation of garment behaviuor

On the beginning, animators have used only models with consideration for the physical laws, which drive the real world.

These methods have become unable to present even the simplest realistic effects of fabric behavior in the processes of garment development.

Methods for animation the realistic fabrics behavior (wrinkling, folds, drape) and garment behavior during wearing are suitable for new generation of movies an computer games and so on..

Application areas for garment simulations

Garment behaviour simulation has many potential application areas such as

•entertainment industry, (the entertainment industry requires fast, convenient and effcient tools for designing garments that look realistic enough

•CAD/CAM systems, (CAD/ CAM tools and interactive online stores make use of garment design and simulation systems)

•e-commerce, (e-shoping)

•textile industry (fashion designers wish to see the appearance of a garment on a virtual mannequin before the garment is manufactured)

protoyping a new textile products (garments, seats.....)

Computer aided tools for designing and simulation of garments

- 2D (do not allow the fitting of a garment on a mannequin)
- 2D/3D (the user draws the 2D pattern of the garment parts and the system triangulates these patterns and converts them into physically-based models)

Computer systems for 2D/3D virtual simulation/prototyping of clothing

-Browzwear -

www.**browzwear**.com/

(VStitcher[™], VStyler[™] and VViewer[™], are recognized as commercial applications on the market for 3D visualization and design of garments and materials)

- OptiTex -

http://www.optitex.com/

(OptiTex [™] 3D, Pattern Design System (PDS) OptiTex, OptiTex Runway are the applications for 3D visualization and design of garments and

materials)

Computer systems for 2D/3D virtual simulation of clothing

- Lectra (http://www.lectra.com/

It covers the fields: Fashion, Foodwear, leather goods, Automotive and Composites and industrial fabrics) (*Modaris 3D Fit, - for design and products engineering*)

-Assyst (<u>http://www.human-</u> solutions.com/)

-Fashion and interiors products

Computer systems for 2D/3D virtual simulation/prototyping of clothing

Gerber (http://www.gerbertechnology.com/)

The basic issues to consider when modeling the garment in a virtual environmental are:

Geometrical representation

(geometrical representation, is about the accurate representation of the shape of the cloth)

• **Behavior of cloths** (shows the various properties of the garment's material such as stress-strain curves)

PRESENTS MANY UNKNOWNS (open research area)

The basic issues to consider when modeling the garment in a virtual environmental are:

•Interaction with the environment (deals with how the

cloth behaves under environmental conditions such as gravity, wind or collisions with rigid objects.

•Rendering of fabric surface

(is an open-research area, which involves the visualization of fabrics)

The visual appearance of fabric is crucial when real appearance of garment is required in a virtual environmental

Graphic presentation of fabric structure

Techniques and methods for computer simulation

Computer simulation of garment is the result of a large combination of techniques and methods:

• **Physics- based models** for define mechanical properties of fabrics. (nonlinearity and large deformation at any place in the cloth, such as folds and wrinkles).

Physics-based models show their potential into real-life simulations of cloth shapes. The geometrical substrate is enriched with information derived from fabric properties and dynamic laws.

- Collision detection (Geometrical contacts between body and cloth and cloth and cloth.
- Computational methods (computation speed and efficiency).

Physics-based models

- Particle system
- Finite element
- Spring –Mass models
- Models Based on Elasticity Theory
- Combination of models

Physics-based model- Particle system

Authors Donald Hause and David Breen

Their model is based on the observation that cloth is best described as a mechanism of interacting mechanical parts rather than a continuous substance, and derives its macro-scale dynamics properties from the micro-mechanical interaction between threads.

The cloth is represented by a set of particles.

The energies of each particle are defined.

The final equilibrium shape of the cloth occurs at the minimum energy of the whole particle system. Energy function were derived using the Kawabata data.

The model produces only draped configurations without motion and its original implementation was slow and inefficient.

Physics-based model-Finite element

Finite element method (FEM) methods belong to the numerical analysis, which is based on the use of matrix algebra. Any design is discretised on appropriate finite elements.

The nonlinear elasticity problem is reduced to a linear, planar one in each step.

In contrast to mass-spring models, which deal with regular quadrilateral meshes, this method works independent of the mesh topology.

Physics-based model- Models Based on Elasticity

Authors : Feynman

He simulates some mechanical properties of cloth by defining a set of energy functions over a 2D grid of 3D points.

The total energy of this cloth model contains tensile strain, bending and gravity terms.

He assumes that cloth is a continuous flexible material and derived his energy functions from the theory of elastic shells.

Techniques and methods for computer simulation

- Physics- based models
- Collision detection
- Computational methods

Cloth Self Collision and Response.mp4

Collision Handling

•Garments interact with the body or with other garment panels. The shape and the movement of the body affect on the garments movement.

•In order to obtain realistic simulation of garment panels, collision handling must be achieved in an accurate and efficient way.

Collision handling consists of two phases:

• Collision detection: Checking the geometrical contacts between the objects. (fabric to fabric, fabric to body)

• Collision response: Correcting the velocities and positions of the colliding objects by applying constraints or forces.

VIRTUAL PROTOTYPING OF CLOTHING

Virtual prototyping of garment

- Virtual prototyping is a technique in the process of garment development that involves:
- •application of computer aided design intended for garments development and
- •virtual prototyping of them.

It has been recently introduced to clothing industry, become a topic of increasing interest of both computer graphics and clothing industry

Whay it becams important?

Virtual prototyping of garments provides high potential for :design,

- product development and
- •marketing processes.

Prototyping the clothes in a virtual environmental

1. Full body scan or parametric model

Design idea

2. Cloth and fabric definition

3. Virtual stiching

3. Pattern and marker making

4. Cloth simulation
Virtual prototyping of garment

Fit a garment on the body model is an important factor to produced: comfortable, functional and well fitted garments.

Within the process of virtual prototyping clothes are still open questions ?

Todays the central focus of researches in this area is based on:

- on development of the efficient mechanical simulation models of fabric, which can accurately reproduce the specific mechanical properties of textiles.
- The other aspect of the researches focuses on modelling of virtual humans to assure representation of the exact human body figure needed for virtual prototyping

Computer simulation of fabric behaviour

Fabric behavior simulation ???

• Computer modeling behavior of a fabric is still a very **demanding** task when constructing a proper physical based model.

• Fabric and other textile materials are **non-homogeneous materials with nonlinear properties**, which are significant at low loading also.

•Low deformation and large displacement are also characteristic , therefore, there behavior is very unpredictable.

Application: Simulation of "real" fabric behavior

Draping behavior according to Cusik drape meter

Physical based model was created using FINITE ELEMENT METHOD

Drapeability

The drapability of the fabrics is one of the most significant properties which characterize the shape of producing cloths.

It is one of the most important aesthetic concept characteristics.

Tablecloth's drape

Curtain's drape

Drape on mannequin

Drapeability parameters

drape coefficient, number of folds, their depth, evenness,

Drape coeffient

representing ratio between sample surface when laid horizontally and the same surface when draped.

Measurement equipment:

Cusick drape meter with Drape Analyser

Data preparation for fabric simulation

Reological parameters of fabric

Young modulus Shear modulus Poisson ratio

Suppositions:

Homogeneous Orthotropic Linearity by low loading

 $E_o = 14,98 \text{ Nmm}^{-2}$ $E_v = 1,45 \text{ Nmm}^{-2}$ $G_o = 0,108 \text{ Nmm}^{-2}$ $G_v = 0,091 \text{ Nmm}^{-2}$ v = 0,22

Application: Simulation of fabric drape

Numerical simulation of drapability

Numerical model

10/12/2012

Drape simulation of fabric

Merjeni / izračunani parametri	
(Cusik drape meter)	
Št. gub	7
Max.poves / mm	59,90
Min. poves / mm	35,71
Globina gube / mm	45,70
Max.amplituda gube / mm	138,30
Min. amplituda gube / mm	94,80

(Cusik drape meter)

Numerical simulation with FEM

Izračunani parametri z MKE	
Št. gub	6
Max.poves / mm	59,9
Min. poves / mm	35,8
Globina gube / mm	35,53
Max.amplituda gube / mm	148,34
Min. amplituda gube / mm	112,81

10/12/2012

Drape simulation of fabric

Experiment
Non Symetric

Numerical simulation
Symetric

Fused panels are inhomogeneous all over their surfaces, and anisotropic with non-linear properties.

A numerical model cannot take into account either local inhomogeneities, nor anisotropic character of the material.

Virtual models: parametric and scanned human body

Parametric model of human body

-									
	🧟 Model Pro	perties							
	Neck Base	_		35.14	÷	Waist Depth		- 82.14	
	Neck Length	_		8.4	÷	Waist to Hip		- 18.8	
	Arm Length		_	51.57	*	Overbust		90.48	
	Bicep			24.78	+	Underbust		- 80.23	
	High Hip	_		110.4	*	Shoulder Slope		6.72	
	Thigh	—	<u> </u>	75.9	*	Breast U/D		-	
	Mid Thigh			75.07	*	Breast L/R		-	
	Knee		-]-	37.36	*	Buttocks		-	
	Calf		\vdash	39.75	*				
	Main Advanced (Pose Appearance /								
	Place Mea	sure	Rest	ore Sele	cted	Restore All		Default	

Parametric body (Optitex)

Body measurments

By hand By scanner

Scanned model of human body

3D body scanner Vitus Smart.

TECHNOLOGY AVAILABLE

Company	Scanner type	Web site
Cyberware	WBX, WB4	http://www.cyberware.com
Hamamatsu	Body line scanner	http://www.hamamatsu.com
Hamano Engineering	VOXELAN	http://www.voxelan.co.jp
[TC] ²	2T4, 3T6	http://www.tc2.com
Human solutions	Vitus Pro, Vitus Smart	http://www.human-solutions.de
Telmat	SYMCAD 3D Virtual Model	http://www.symcad.com
Wicks & Wilson	Triform BodyScan	http://www.wwl.co.uk

TECHNICAL DATA

System	Boot size (WxDxH me- tres)	Measure size (WxDxH me- tres)	Colour	Resolution x,y,z (mm)	Projection sys- tem
Cyberware WB4	3.6x3.0x2.9	1.2x1.2x2.0	Yes	0.5, 2, 5	Laser, class 1
Hamamatsu Body line	1.6x1.7x2.4	0.9x0.5x2.0	no	1, 7.5, 5	Infrared light emit- ting diodes LED
Hamano Voxelan			No	3.4, 3.4, 3.4	Two vertical laser lines
[TC] ² 3T6	3.3x5.9x2.4	1.1x1.1x2.0	No	1, 2.5, 2,5	Structured light
Human solutions Vitus smart	2.2x2.2x2.8	1.0x1.0x2.1	Optional	1, 2, 1	Laser, class 1
Telmat Symcad	3.9x1.6x2.4		No	No	Light, structured light
Wicks & Wilson Triform Body scan- ner	2.5x1.5x2.4	0.75x0.75x2.0	yes	1.5, 1.5, 1.5	Structured light

Flow chart of the data collection process- Overview

Scanned model of human body

http://www.breuckmann.com/

Artec[™] Eva 3D Scanner is similar to a video camera which captures in 3D. The scanner captures up to 16 frames per second. These frames are aligned automatically in real-time, which make scanning easy and fast. This is especially important for the creation of special effects, medical and biomechanical research. Because of the high quality, Eva's textured models can be used in such industries as CG/Animation, forensics and medicine

Body measures resulted from 3D body scanning

BODY MEASURE	SKI JUMPER MEASURE (cm)	MEASURING POSITION	BODY MEASURE	SKI JUMPER MEASURE (CIII)	MEASURING POSITION
Body high	172,9		Length ampit- waist	19,6	2
Chest circumference	89,1		Hip depth	22,2	
Waist circumference	64,7	Ê	Wrist circumference	15,3	1
Hip circumference	93,1	A	High thigh circumference	52,1	A
Neck circumference	39,8		Knee circumference	36,4 cm	J
Length crotch- floor	75,7	A	Length waist- floor	110,2	N
Hand length (7. neck vertebra – wrist)	82,8		Ankle circumference	28,4	L

- 3D body scanner Vitus Smart.
- Cloud point: up to 600.000 points.
- Body measures: ScanWorx programme package.

3D scanner cannot produce sufficient scan data and lead to defect body model.

•Reconstruction of the 3D body model was realized by different computer programmes:

• Programme ATOS.

Used tools

Thin Mesh - Number of polygons was reduced from about 660 000 to 150 000 triangles .

Then the mesh was repaired and holes were filled with the tools Repairing Mesh, Regularize Mesh, Eliminate Mesh Errors, Relax Mesh and Fill Holes.

Several operations were repeated in order to reduce mesh errors.

MeshLab programme was used next. Mesh imported from ATOS was still not watertight and totally uniform. Therefore, a tool Surface reconstruction: Poisson was used.

This tool makes from more partly overlapped meshes one uniform average mesh.

There are less details included, but we got properly mesh for further work.

Rhinoceros programme was used after that. The whole object was scaled and properly rotated.

Programme NetFabb Basic was used for the final test and view of the model

Programme <u>NetFabb Basic</u> was used for the final test and view of the model.

This <u>was the last step</u> before importation of the scanned 3D body model into the OptiTex programme for clothes simulation

APPLICATION OF GARMENT SIMULATION - VIRTUAL PROTOTYPING OF GARMENTS

Virtual prototyping:

- 1. Women jacket and skirt
- 2. Jumpsuit for ski jumpers

Prototyping of womens garment

Real prototype and jacket

Garment design and fabric selection

Fashion sketch

- Fabrics, suitable for upper garments.
- Different natural fibres (cotton, linen) and mixtures (linen/PA).
- Fusing was performed in all models using the same type of adhesive interlinings and Mayer fusing machine.

CAD preparation of pattern using the program OptiTex PDS

program OptiTex PDS

CAD preparation of pattern using the program OptiTex PDS

- 1. Construction the based pattern
- 2. Modeling
- 3. Pattern preparation for 3D simulation

Fabric properties definition of pattern

- the fused and non fused part of pattern were chosen
- the fabric properties for virtual simulation of prototype based on FAST measurements.

The following properties were taken into account for fused and non fused pattern

- Extension in a warp (E100-1) and weft direction(E100-2),
- Bending rigidity in a warp (B1) and weft direction (B2)
- •Shear rigidity(G),
- •Fabric thickness(ST) in
- Fabric weight (W).

Preparation the virtual body models

• parametric and scanned virtual body was used

Parametric body (40 different body measurement)

Scanned model

The reconstruction process of scanned body model

Virtual body - scanned real person

- body measures obtained by the scanner
- Graphical programs for reconstruction the scanned body models ATOS for reconstruction the 3D body models Program MeshLab (tool Poisson) Program Blender Zoom the 3D body and import into OptiTex PDS 3D Creator

The reconstruction process of scanned body model

Program ATOS

program MeshLab

Program Blender
The reconstruction process of scanned body model

Programme NetFabb Basic

The simulation of prototype on parametric and scaned body (skirt and jacket)

Prototyping of jumpsuit for ski jumpers

Virtual and clasical way of virtual prototyping will be presented

Profesional Jumpsuit

Prototype Jumpsuit

Scanned body model

Programs used:

- Atos
- Blender
- Rhino 4
- Netfabb
- MeshLab

Reconstruction of 3D body scan models

Parametric body models vs scanned body

MERE [SLOVENSKO]	MERE [ANGLESKO]	MERE SKAKALCA	PRIKAZ MERJENJA	6	
Dolžina levega rokava od 7. vratnega vretenca	ann lenght to neck back left	82,1 cm	P		
Dolžina desnega rokava od 7. vratnega vretenca	ann lenght to neck back tight	82 <u>,8 cm</u>		MA	
Dolžina levega rokava	arm lenght left	60,7 cm	P		
Dolžina desnega rokava	ann lenght right	61,0 cm			
Dolžina leve nadlahtnice	upper arm lenght left	34,6 cm	Å		

Scope of body measurement and preparation the parametric model

Materials of Ski-jumper suit

• Five-layer laminated fabric consisting of:

- first layer: outer fabric,
- second layer: foam,
- third layer: elastic membrane,
- fourth layer: foam,
- fifth layer: lining fabric.

Fabric properties neccesery for computer record of fabric

	MI	EASURED VALU	OptiTex parameters			
PROPERTIES	Unit	COURSE D.	WALE D.	Unit	COURSE D.	WALE D.
Extension at load of 98,1 Nm ⁻¹ / E 100	%	9.6	10.9	gcm ⁻²	400.641	352.85 8
Bending rigidity / B	µN∙m	44.8	54.5	dyn*cm	4965	
Shearrigidity / G	Nm ⁻¹	199		dyn*cm	1990	
Surface thickness / ST	mm	0.035		cm	0.0035	
Mass per unit area / W	gm ⁻²	601		gm ⁻²	601	

Mechanical properties of the laminated fabric measured by **FAST** measuring system and converted properties for jumpsuit simulation using

OptiTex programme

Construction of pattern

Pattern Design System (PDS) OptiTex were used for base construction and modelling of pattern.

Marker preparation

Computer made marker were done by *Pattern Design System (PDS) OptiTex*

Hand made marker

Sewing process

Real sewing

Virtual sewing

Comparison between virtual and real dress – FRONT viewu

3D virtual prototyping of women's garments

- Accurate and fast process for development of fashionable and sports garments.
- Sportswear for professional purposes.
- Example: competitive skijumper suit.
- Realistic simulation of garment behaviour.
- Accurate 3D body model.

Advantages of virtual prototyping

Advantages of 3D prototyping in comparison to conventional

- The 3D virtual prototyping process carry out one person
- The development process of clothing is faster and effective
- The possibilities the changing of garment prototypes are unlimited.
- Tele-work and fast data transfer
- Accurate and fast process for development of fashionable and sports garments.
- Accurate 3D body model
- •Help us shorten the time of garment developing processes
- savings the cost of development
- the deliver of products are quickly

Liminitation of virtual prototyping

Limitation of 3D virtual prototyping process of garment

- Simulation problems by pretending garment construction.
- Virtual draping of fabrics dose not reach the appearance of real draping of fabric.
- **Complicated transfer the scanned body** into program package for garment construction.
- Very powerful and expensive computer equipment is needed.

The research possibilities on the field of development 3D virtual prototyping of garment.

- **to extend data bases** of mechanical properties of textiles materials according to kind and purpose, raw material weight and yarn density.
- to improve the computer models for fabrics and other textiles material.
- to design the different parametric human bodies focusing on various types of body shapes and ages groups.
- High-level interaction and testing of fit and drape of a garmen

Do you remember the questions that I made at the beginning of class?

Does have the virtual presentation of garment THE FUTURE?

What is your opinion?

Discussion is open!!

I would like to thank you for invitation to cooperation in project OPTIS

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ