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Environmental conditions 

 interaction = balance within composite structure 

 (cf. textiles with the semi-permeable membrane) 

Thermal comfort of the user 

Practical motivation of the problem 

- Creation of the thermal comfort 

- Improvement of the working conditions 

- Lack of efficiently algorithms describing the 2D and 3D  

  problems (only 1D model is sufficiently described) 
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Practical motivation of the problem 

• Dressings on the textile structure with the microcapsulated 

terapeutic substance. 

• Textile products subjected to the finishing procedure within the 

ironing machine. 

• Press with the cooling and conditioning device for textile products. 

body 

wound 

surrounding 
therapeutic 

agent 

exudate from wound 

           internal layer   microcapsules   membrane    external layer 



Technical University of Lodz
Department of Technical Mechanics and Informatics

Practical motivation of the problem 

Heat and mass transport from the users body through the multilayer 

composite textile with the barrier effect, cf. firefighters protective clothing. 

external protective layer 

external textile material 

semi-permeable 

membrane 

internal textile materials 

free space 

skin 
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Primary problem. Initial conditions of coupled heat and mass transport.  

Initial vector of design variables. 

 

Physical model. Definitions of material parameters. Homogenization. 

 

Mathematical model. General form of objective functional. 

Determination of state variables for primary problem. 

 

Sensitivity analysis. Determination of state variables and sensitivity 

expressions by means of direct and adjoint approaches. 

 

Shape optimization. Particular form of objective functional.  

Numerical solution.  

 

Physical interpretation. Visualization = distribution maps of state variables. 

Solution strategy of the coupled problem  
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Comparable dimensions a, b, c:   - 3D homogeneous textile structure   

Negligible one dimension:            - 2D homogeneous textile structure 

a 

b 

c 

Basic textile structures (yarn, ropes) 

- macroscale: 1D    - microscale: 3D 

 

 

Flat textiles   

- macroscale: 2D    - microscale: 3D 

 Problem of homogenization scale 

 (micro- and macroscale) 

Physical model. Homogenization 

http://upload.wikimedia.org/wikipedia/commons/f/f7/SuperMacro_Rope.JPG
http://en.wikipedia.org/wiki/File:Cordages-mutin.jpg
http://en.wikipedia.org/wiki/File:Stockinette.jpg
http://knittingknittedfabrics.com/classificationmodule/biz/index_view.do?id=247010
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Physical model. Homogenization 

Textiles (woven fabrics, knitted fabrics, nonwovens) have the properties: 

- the inhomogeneous, repeatable structure, 

- the composite structure: matrix of fibers within the filling, 

- some structures have the semi-permeable membrane.  
Homogenization of textile structures  

- creation of the homogeneous, orthotropic structure, 

- average thermal and mass transfer conductivity coefficients for 

  different materials of matrix and filling, 

 

rule of mixture (Golanski,Terada,Kikuchi 1997) 

 

hydrostatic analogy by means of the Turner’s Model (G, T, K, 1997) 

  

proportional volume fraction for composite materials(Tomeczek 1999) 

 

other metods (cf. solutions for porous structures, composites, etc.) 
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Physical model. Simplifications 

x 

y 

z 

3 3 

2 

1 

x 

y 

1 – reference plane  

2 – textile structure 

3 – optional cross-section of textile structure 

3 - 3 

The same (i) shape, (ii) heat and mass transfer conditions in the structure: 

Reduction 3D ---- 2D problem 

reference plane 

surrounding 
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Physical model.  

Problem of primary transient heat and mass transfer 

Output: flux density vector of  

    Heat q2 

 

    Moisture qw2  

• Homogenized textile structure; multilayer textile composite = 

  fibers + gas within the interfiber spaces. 

• Different heat flux and moisture flux densities; i.e. gradients of  

  temperature T and moisture flux density qw within the material. 

• State variables: 

  - water vapor concentration within fibers wf 

   - water vapor concentration in the void spaces between fibers wa 

  - temperature T 

Input: flux density vector of 

 Heat q1 

 

     Moisture  qw1 
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Assumptions according Li(2001), Li and Luo(1999): 

 

• Volume changes of fibers caused by moisture gradient can be 

  neglected. 

• Moisture is transferred through the fibers by sorption/desorption 

  between the free spaces and the material as well as the diffusion  

  within the fibres material. 

• Orientation of fibers within the structure plays a minimum role in  

  the mass transport; the diameters of the fibers are small and the  

  water vapor travel much more rapidly in the air than in the fibers. 

• Instantaneous thermal equilibrium between the fibers and gas in  

  the interfiber spaces is achieved during the process of water  

  vapor transfer. 

     R=const 

 

 
      sorption     diffusion    desorption 

Physical model.  

Problem of primary transient heat and mass transfer 
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Mathematical model.  

Problem of primary transient heat and mass transfer 

Necessary equations: 

• Balance equations: heat and mass balances in the textile product. 

• Constitutive equations: characterize the material during the coupled 

  transfer, connect the heat and mass flux densities with the active forces 

  generating the transport.  

• State equations: correlations between state variables of system. 

• Physic-chemical correlations: describe the properties of the particular 

  material phase. 

Heat balance formulation: 
DC – heat supplied with the water vapor to the material, 

ZC – heat emitted emitted by the source, 

OC – heat transported to the surrounding through the external boundary, 

AC – heat accumulated within the material. 

.AOZD CCCC 
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Mathematical model.  

Problem of primary transient heat and mass transfer 

Heat supplied with the mass to the fibres, transported by 

sorpiton/desorption between  fibres and the interfiber spaces 

f - heat source capacity 

Heat lost by accumulation within the material of the structure Ω 

c - volumetric heat capacity   

ρ - material density 

λw - heat sorption of water vapor by fibers  

      i.e. the cross-transport coefficient, 

ε   - material porosity 

Heat lost by the transport through the external surface Γ in time per unit 

A - matrix of thermal  

      conduction coefficients 

  dΩ 
dt

dw
ε1λD

Ω

f
wC  

Heat generated by the internal sources within the domain Ω 

 dΩ t,fZ
Ω

C  x

       t,t,Tt,      dΓ t,O
Γ

C xqxAxqxq * 

dΩ 
dt

dT
ρcA

Ω

C 
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Heat balance in general form 

Mathematical model.  

Problem of primary transient heat and mass transfer 

     

     











ttTt

t,ftdiv
dt

dw
ε1λ

dt

dT
ρc f

w

,,,

,

* xqxAxq

xxq
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Mathematical model.  

Problem of primary transient heat and mass transfer 

f w- mass source capacity 

Mass lost by accumulation within the fibres  

ε - material porosity 

Mass lost by the transport through the external surface Γ in time per unit 

D – mass diffusion 

       coefficient 

Mass generated by the sources within the domain Ω, cf. microcapsules 

 dΩ t,fZ
Ω

wM  x

       t,t,wDt,    ;dΓt,O *

wfwwM xqxxqxq  


  

  dΩ 
dt

dw
ε1A

Ω

f
W  

Mass lost by accumulation within the free spaces between fibres  

dΩ 
dt

dw
εA

Ω

a
P 
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Mathematical model.  

Problem of primary transient heat and mass transfer 

Mass balance formulation: 
ZM – mass generated by the sources, 

OM – mass transported to the surrounding through the external boundary, 

AC – mass accumulated within the fibres, 

AP – mass accumulated within the free spaces between fibres. 

.AAOZ PCMM 

Mass balance in general form 

    

     

     











t,t,wDt,

tftdiv
dt

dw
ε

dt

dw
ε1

*

wfw

w
af

xqxxq

xxq ,,w
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Mathematical model.  

Problem of primary transient heat and mass transfer 

Heat and mass transport equations 

 

 













;T  ;fdiv
dt

dw
ε1λ

dt

dT
ρc

;wD   ;fdiv
dt

dw
ε

dt

dw
ε1

*f
w

*

wfwww
af

qAqq

qqq

ε   effective porosity of the textile material 

qw vector of mass flux density  qw
* vector of initial mass flux density 

fw   mass source capacity 

    mass transport coefficient of the water vapor within the fibers 

   gradient operator,   c   volumetric heat capacity of fabric  

λw  cross coefficient (the heat sorption of water vapor by fibers) 

q   vector of heat flux density  q*  vector of initial heat flux density 

f    heat source capacity  t    real time 

ε/ζhD a

2 equations – 3 state variables !!!!!!!!!! 
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Third correlation acc. Li(2001) Li Luo(1999), Li Holcombe(1992): 

- experimental equation, 

- two-staged procedure described by the factor of proportionality p, 

- first stage: Fick’s diffusion; second stage: experimental correlation. 

Radial diffusion within fibres acc. to Fick’s theory 

R1 sorption rate at the first stage  

R2 sorption rate at the second stage 

    experimental correlation 

teq equilibrium time, variable for different textile structures, determined 

experimentally, cf. the wool fabric teq=540 s 

  ;pRRp1
dt

dw
21

f 

Mathematical model.  

Problem of primary transient heat and mass transfer 

;tt  when1p

;tt and 0,185 w when0,5p    ;tt and 0,185 w when0p

eq

eqaeqa
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Mathematical model.  

Problem of primary transient heat and mass transfer 

Sorption rate within fibres at the first stage of sorption process 

 
 

dr

dwrD
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d

r
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dt

dw
=t,R fff

1 x

  ;ρβw=t,R,w a1f x

Transport equations at the first stage of sorption process  
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Mathematical model.  

Problem of primary transient heat and mass transfer 

    ;
HH

s
expHHsign st,R

fa

2
fa12 















x

Sorption rate within fibres at the second stage of sorption process  

s1 s2 material parameters 

H   relative humidity 

• Functions H1 H2 (i.e. the material characteristics) should be known. 

• Sorption/desorption process on the boundary fibres/interfiber spaces  

   should be analyzed. 

η
e

e
 

T
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w   absolute humidity, i.e. water vapor concentration               

H   realtive humidity  e    water vapor pressure           

E   saturated water vapor pressure 

η    factor of proportionality, physical interpretation: absorption/desorption  

      coefficient of the water vapor on the boundary fibres/interfiber spaces 

Ea = Ef 

 

Ta = Tf 
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Mathematical model.  

Problem of primary transient heat and mass transfer 

Transport equations at the first stage 
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Transport equations at the second stage 
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Similar form of transport equations 
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Heat transport 

=Tqcr  
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Moisture transport 
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Mathematical model.  

Problem of primary transient heat and mass transfer 
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Mathematical model.  

Problem of primary transient heat and mass transfer 

Boundary conditions – 

mixed conditions 
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first-kind b.c. 

second-kind b.c 

 

third-kind b.c. 

 

radiation condit. 

fourth-kind b.c. 

initial conditions 
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Mathematical model. Optional objective functional 

The optional objective functional 

Ψ1, Ψ2, γ1, γ2 continuous and differentiable functions of the arguments 

Material derivative concept:     

1st order sensitivity with respect to design parameter:   

   Fp= DF/Dbp      p = 1...P 

 

 

 DIRECT APPROACH     ADJOINT APPROACH 
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Heat transport 
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Sensitivity analysis. Direct approach 

• The same: shapes, materials, heat and mass transport processes. 

•  Additional fields within the domain and on the boundaries. 
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Sensitivity analysis. Direct approach 

• The unknown fields = solutions of additional problems 

   associated with each design parameter. 

• Equations formulated by differentiation of equations for the 

   primary problem. 

• Differential transport equation 
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Heat transport 
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Sensitivity analysis. Adjoint approach 

• The same: shapes, materials, heat and mass transport processes. 

•  Additional fields within the domain and on the boundaries. 



Technical University of Lodz
Department of Technical Mechanics and Informatics

Sensitivity analysis. Adjoint approach 

• Equations similar to the equations for the primary problem. 

• Differential transport equation 
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0.p for  βηZ   0;p for  βρZ 

Time transformation  t=0  t=tf primary problem t 

   τ   τ=tf  τ=0 adjoint problem 
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Creation of a new shape of the textile structure 

Optimality conditions 

Shape optimization problem 

G, C optimization/constraint functionals. 

 













 ,0C-C

G min Gmax 
   or      

0C-C

G min

00

Introducing the Lagrange 

functional = optimality conditions 
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DG/Dbp; DC/Dbp  1
st order sensitivities of the optimization/constraint 

                  functionals with respect to design parameter bp, 

      Lagrange multiplier. 
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Shape optimization problem. Functionals 

Maximization = optimal radiator of heat and mass transport 

Minimization = optimal isolator of heat and mass transport 

• Heat and mass flux densities normal to the external boundary 

dt; dΓq=G
ft

0 Γ

n1   







external

t

0 Γ

nw2 ΓΓ  dt; dΓq=G
f









 

Maximization = maximal amount of heat and mass generation 

Minimization = minimal amount of heat and mass generation 

• Amount of heat and mass generated within the domain 

dt. dΩ f=G
ft

0 Ω

1   







dt. dΩf=G

ft

0 Ω
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Shape optimization problem. Functionals 

• Measure of temperature and water vapor concentration 

;n  ;  dt dΓ
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T0 wf0  assumed levels of state variables 

Minimization of the functional =  

 - distribution of state variables are equalized, 

 - maximal local values of state variables are minimized 
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Methods of shape modification 

Ω 
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Methods of shape modification 
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body 

wound 

surrounding 
therapeutic 

agent 

exudate from wound 

           internal layer   microcapsules   membrane    external layer 

Numerical example: optimization of multilayer textile dressing 

with change phase material in terapeutic microcapsules 

1           2     3    4    5 

1 – wound,  

2 – internal layer of  

      nonwovens,  

3 – nonwovens with  

      microcapsules, 

4 – membrane,  

5 – external protective layer 
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Numerical example – primary problem 

Γi: 

Γ1u:  

health skin 

Γ1b:  

wound 

Γ1w:  

Γ1e: 

Γ1s: 

wf1∞ 

wf1∞ 

x1 

x2 

   t,wt,w 01

f1f1 xx 

   t,wt,w 02

f1f1 xx 

  0t,qnw1 x

  0t,qnw1 x

      t,wt,wht,q f1f1w1cw1 xxx 

   t,wt,w 1)(i

f1

(i)

f1 xx    .ΓΩ  ;00,w f1  xx

Transport of exudate from the wound to the surrounding – physical model 
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Numerical example – primary problem 

Transport of therapeutic substance from the microcapsules to the skin – 

physical model  

Γi: 

Γ2u:  

Γ2b:  

Γ2e: 

Γ2s: 

wf2∞ 

wf2∞ 

x1 

x2   0t,qnw2 x
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f2 xx    .ΓΩ  ;00,w f2  xx

   t,qt,q 0

nw2nw2 xx 

     f2f2w2cw2 wt,wht,q xx
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Numerical example – primary problem 

;mindtdΓ qdΓ qF

 maxdtdΓ qdΓ qF

f

2e1e
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0 Γ
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1enw1
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0 Γ

2enw2
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1enw1

 

 

































0.qdΓ q 0

n

Γ

n Constraints 

Objective functional 

Optimization problem: 

• Real problem: Optimal mass transport from the dressing surface to the  

  surrounding / the same heat conditions on the skin to secure the  

  terapeutic effect. 

• Physical model: Radiator of the mass diffusion, i.e. maximization of the 

  mass flux densities of exudate and therapeutic agent on the external  

  surface with the constant heat flux density on the skin. 
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Γi: 

Γ1u:  

health skin 

Γ1b:  

wound 

Γ1w:  

Γ1e: 

Γ1s: x1 

x2 

 t,w1p

f1 x

 t,w2p

f1 x

   t,wt,w 1)p(i

f1

p(i)

f1 xx 

 t,qp

nw1 x

 t,qp

nw1 x

 t,qp

nw1 x

 ,0wp

f10 x

p

f1w 

p

f1w 

Numerical example – direct approach 

Transport of exudate from the wound to the surrounding 
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Γi: 

Γ2u:  

Γ2b:  

Γ2e: 

Γ2s: x1 

x2 

   t,wt,w 1)p(i
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 ,0wp

f20 x
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Transport of therapeutic substance from the microcapsules to the skin  

Numerical example – direct approach 

Transport 

equation 

Boundary 

conditions 
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Γi: 
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Numerical example – adjoint approach 

Transport of exudate from the wound to the surrounding 
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Γi: 
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Transport of therapeutic substance from the microcapsules to the skin  

Numerical example – adjoint approach 

Transport 

equation 

Boundary 

conditions 
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1     2    3    4  

1 – internal layer of  

      nonwovens,  

2 – nonwovens with  

      microcapsules, 

3 – membrane,  

4 – external protective layer 

Numerical example – material parameters 

1,4 – nonwovens: porous acryl fibres (85% of fibres) 
A(1)=A(1) =28,8∙10-3 kWm-1K-1

  c(1)= c(4)= 1610,9 kJm-3K       η(1)=η(4)=0,85 

2 – nonwovens: porous acryl fibres with microcapsules (90% fibres) 
A(2)=27,5∙10-3 kWm-1K-1

  c(2)=1600,0 kJm-3K   η(2)=0,85 

3 – semi-permeable membrane: polypropylene (95% of material) 
A(3)=51,8∙10-3 kWm-1K-1

  c(3)=1715,0 kJm-3K   η(3)=0,20 

    540s;t    ;10
ρ

w
8200

ρ

w
4101,12DD 13

2

ff4

f

1

f 






















      540s;t;106,23DD 134

f

1

f  

  540s;t    ;10
ρ

w
6560

ρ

w
3280,896D 13

2

ff2

f 






















    540s;t    ;104,984D 132

f  

  optional  t  ;101,3eD 133

f





Technical University of Lodz
Department of Technical Mechanics and Informatics

Numerical example – optimal shapes 

3 3            3      3       3    3 

4       5    11       11        17 

7       12  12         18  

6       13  13         19  

9       14  14         20  

8       15  15         21  

1               10    16    16     2 

Initial / optimal thickness of layers in textile dressing 

Design variables / initial shape / optimal shape of 

textile dressing for the variable shape of layers 
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Numerical example –  maps of state variables for optimal shapes 

Finite Element Net 

Exudate distribution 

t=60s 

Exudate distribution 

t=960s 
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Numerical example –  maps of state variables for optimal shapes 

Therapeutic agent 

distribution t=60s 

Therapeutic agent 

distribution t=960s 

Therapeutic agent 

distribution t=360s 
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Conclusions 

• The textile structures with the membranes and microcapsules  

   are subjected to the coupled transport problems. 

• The available literature does not contain the optimization of the  

   similar problems for textile dressings by the sensitivity analysis. 

• The effective optimization = the choice of criterion.  

• Minimization of the objective functional = solution of the  

  specified physical problem, the constraints = the permissible  

  domain with respect to technological point of view. 

• The physical model of the coupled transport is described by  

  the state variables: temperature, the water vapor concentrations  

  in fibres and within the free spaces between fibres. 

• The mathematical model contains the transport equations,  

  the boundary and the initial conditions.  

• Numerical implementation shows that the discussed methods  

  can be the effective and fast tools to create the optimal model  

  of the textile structures during the coupled transport. 

 


