

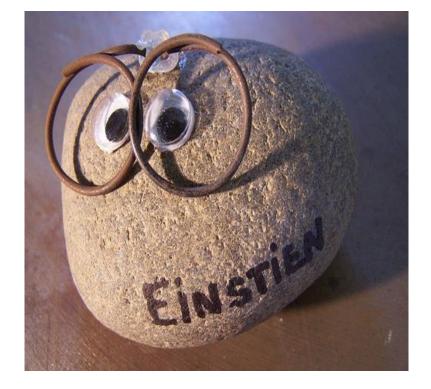
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Education

The American Textiles Scenario: Technology, Business & Education Business

Sustainability

Carbon Footprint


Noéton Policy in Innovation, USA

Arun Aneja

PROJEKT OPTIS PRO FT, reg. č.: CZ.1.07/2.2.00/28.0312 JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Points to Consider Globally

- New Challenges
- Product Innovation
- Process Innovation
- Textile Education
- Conclusion

Points to Consider - The Global Context

Points to Consider - Globally

- Slower textile consumption internationally
 - Less than 2% growth forecasted through 2020
 - U.S. apparel market growth at just 1%
- China & India will become dominant suppliers through 2010
 - Africa and certain Asian and Subcontinent countries will gain in importance
- Significant price deflation due to current economic meltdown and overcapacity

World Consumption of Textiles

Werner Forecast 2000-2020

Year	Pop MM	M Tons	% Growth Ave	Kgs/Cap	% Growth Ave
1950	2513	9939		3.67	
			4.2%		3.0%
1960	3039	14934		4.91	
			3.9%		1.8%
1970	3707	21840		5.89	
			3.2%		1.3%
1980	4454	29821		6.70	
			2.6%		0.8%
1990	5279	38378		7.27	
			2.2%		0.8%
2000	6083	47763		7.85	
			1.9%		0.7%
2010	6849	57655		8.42	
			1.6%		0.6%
2020	7585	67573		8 91	

Apparel, Textiles & Fashions Industry Trends

- Globalization: Growth in Offshore Apparel Manufacturing Slows/China Remains a Major Factor
- Western Apparel Firms Enter the Chinese
 Market
- High-Tech, Nanotech and Smart Fabrics Finding Foothold

- Exercise Apparel Sales Fall Slightly
- 3PL Supply Chain Management Evolves to Serve the Global Market
- Bricks, Clicks and Catalogs Create Synergies While Online Sales Growth Surges

Apparel, Textiles & Fashions Industry Trends

- Alternative Sizing Is Big, But Plus Size Sales Are Slowing
- Discount Clothing Retailers See Promise in Designer Lines
- Luxury Lines Bounce Back And Go Online

- Self Service Retail Take Off
- Mass Designers and Retailers Speed Up for Fast Fashion
- Apparel Manufacturing Gains Ground in the U.S.
- Apparel Goes Green

Forces changing the business landscape

1. Globalization of markets

- Seamless flow of people, technology, capital, information & products
- Is mfg going to shift towards low cost countries in Africa in next decade?

2. Societal demands for higher environmental performance

- Technological developments to enhance the ability of next generation to meet their own needs
- **3.** Financial market demands for increased profitability and capital productivity
 - Satisfy the shareholders expectation

4. Higher customer expectation

 Increasing responsiveness in terms of reduced product cycle time, adding value to customer's customer

5. Changing workforce requirement

 Focus on knowledge, skill improvement, training as an ongoing part of an employee's career

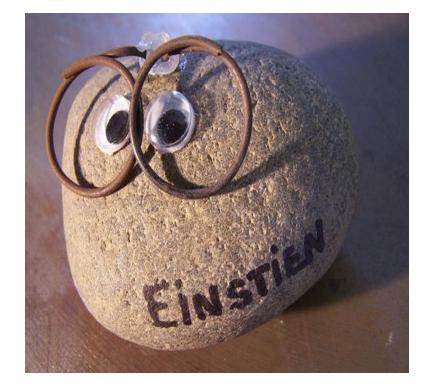
Entering an era of dynamic tension -

Sustainable development through stakeholder engagement

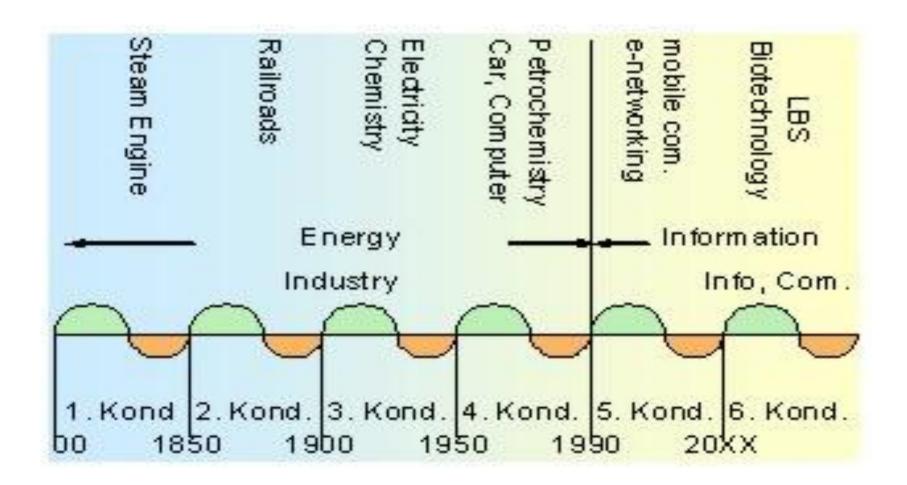
Capital and Labour

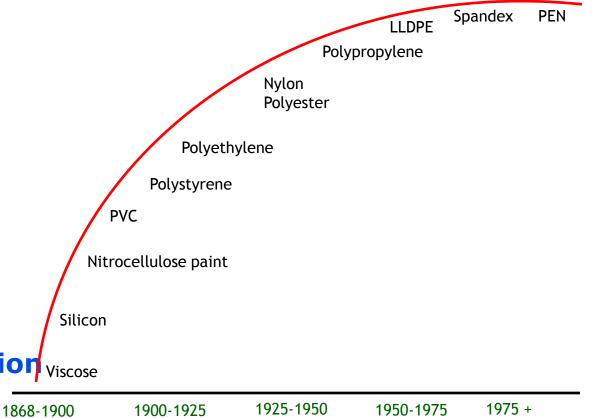
- Capital squeeze on SME's (Basel2 effect)
- Equity and Venture Capital Shortage
- Skilled labour shortage
- Unskilled labour reserve still ample

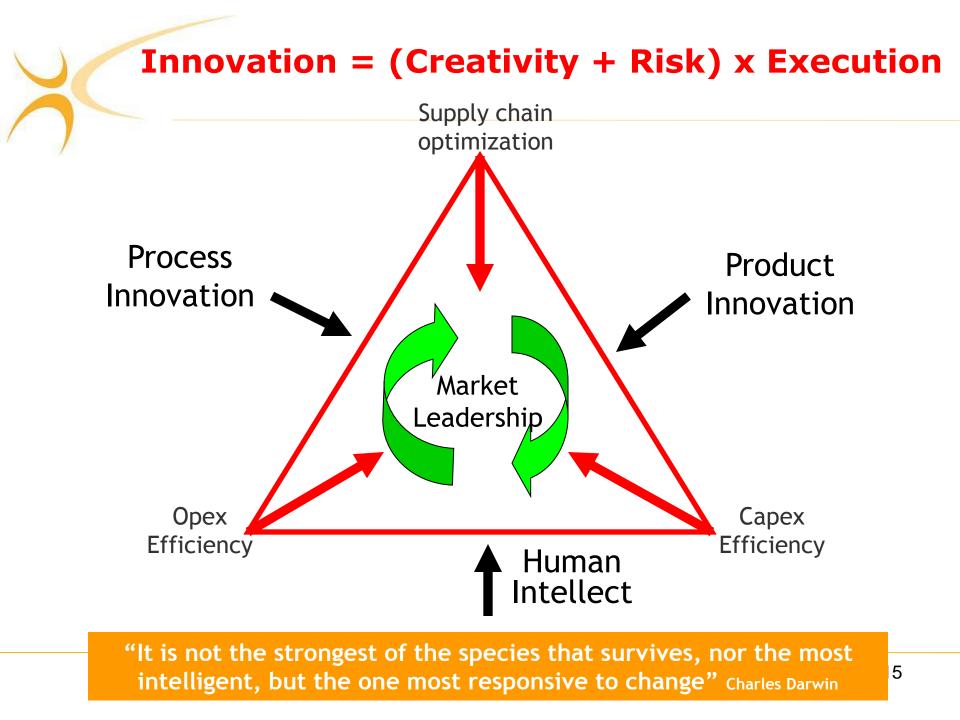
Looking Ahead: Material Economy


- Volatile oil prices USD 50 150/ bbl
 - Upward impact on synthetic fibres
- Coal back in vogue
 - Moving beyond thermal power generation
 - Coal to alcohol to olefins
 - Carbon capture & sequestration
- Energy & water price on the rise
- Biotech: Emerging alternative for nonrenewable resources
- Material science at the confluence of IT, Biotech & Nanotechnology

Current State in USA


- Fibre base moved to Asia (80% of capacity)
- USA only in specialities(UHMWPE) and non traditional emerging technologies
- Overall de-industrialisation in USA
- EU focus on cultural capital, ecoproducts, mass-customization
- Global Cost Pressure
- Reduced R&D Spending
- Higher Consumer Expectation
- Diverse Customer Base
- Rapid Changes in High Tech Industries
- Regional Trading Blocks, China in WTO


- Points to Consider Globally
- New Challenges
- Product Innovation
- Process Innovation
- Textile Education
- Conclusion

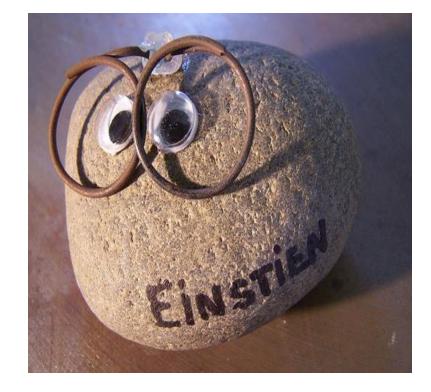


Milestones

- Mechanical clock
- Printing press
- Light bulb
- Steam engine
- Immunization & antibiotics
- Telephone
- Nuclear fission
- Space Shuttle
- Internet
- Mobile communication Viscose

Material science based innovation nearing maturity ?

Saturation in process technology !


Product	Yield			Econo	omy of scale	(KTA)
	Laggard	Leader	Variation	1990	2008	Increase
Ethylene	30.4%	30.6%	0.2%	500	1300	3 times
Ethylene Glycol	66.4%	69.8 %	3.4%	100	600	6 times
ΡΤΑ	94.6%	95.3 %	0.7%	250	800	3 times
LDPE	96.1%	98.5 %	2.4%	80	400	5 times
LLDPE	98.9 %	99.5 %	0.6%	120	550	5 times
Polypropylene	97.0%	98.8 %	1.8%	120	550	5 times
PET	98.9 %	99.8 %	0.9%	70	450	6 times

Source: Nexant, Inc./Chem Systems

*Chemical Grade - 93%, #Refinery Grade, @7% butene comonomer

Key differentiator: Past - Scale with maturing technology Future - Ownership of new technology key to growth

- Points to Consider Globally
- New Challenges
- Product Innovation
- Process Innovation
- Conclusion

Driving forces for New Textile Technologies

Technology push

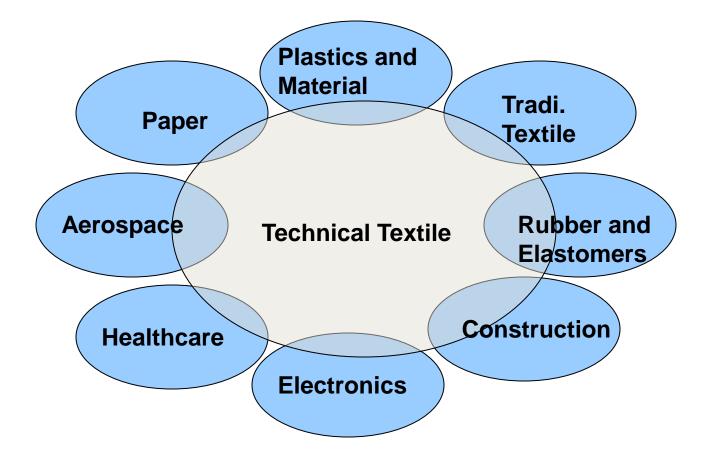
Polymer science and technology **Fibre production** Yarn and fabric forming techniques **Inter disciplinary developments** Market pull **Consumer demands** New avenues for existing products Environmental Stricter regulations (REACH) **Increased** awareness

Driving Force: Sustainability & Carbon Footprint Reduction

Must Consider Complete Product Life Cycle

High Knowledge Content Materials

Innovation Focused


Key Emerging Technologies (highly synergistic/at the frontiers of the small/ in a "feeding frenzy" off each other)

- IT (communication, computing, sensors, electronics, machine intelligence)
- **Bio** (genomics, molecular biology, designer life forms)
- Nano (coatings, barriers, computers, sensors, materials)
- Energetics (solar, biomass, explosives, propellants, storage)
- Societal Technological Systems (virtual presence, teleeverything, robotic everything, digital earth/digital airspace)

EMERGING TECHNOLOGIES

Technical Textiles: Fusion of products (Marriage of Properties)

Covers a vast range of products & applications

Global Market Size: Technical Textiles

Technical Textiles	Unit	2005	2010
Output	MMT	19.7	23.8
Value	US\$ bn	107	127
Avg value/MT	US\$/MT	5431	5336
Avg value/MT	INR/MT	2,17,000	2,14,400

Source: DRA

- India & China are expected to be the main growth drivers
- Technical textiles to grow at CAGR of 6.45% in volume terms to reach 24 MMT
- Numbers shows that value of technical textiles is at least 3-4 times the nontechnical textiles

Higher margins over conventional textiles

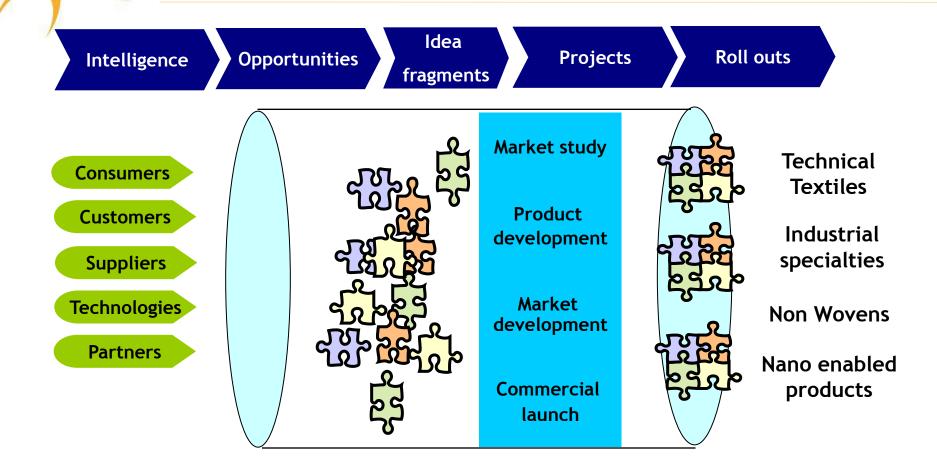
Technical Textile: Fibre Consumption

Fibro (KT)	Year			CAGR (%)	
Fibre (KT)	2000	2005	2010		
Natural	3462	3839	4447	2.54	
Man-made/Inorganic(glass)	13252	15843	19327	3.85	
Total	16714	19682	23774	3.59	

Source: DRA

- MMF has a dominant share of 80% in technical textiles
- Polyester & polyolefin's share is 50%, natural fibres have a share of 20% while other man-made fibres have a share of 30%

Versatility in properties makes MMF the preferred fibre ²³


Technical Textile: Consumption Pattern

Product type	Share (%)	
Filling material	24	
Yarn	9	
Fabrics	67	
-Woven		
-Knitted		
-Non-woven		

• Major consumption is in form of fabrics (67%)

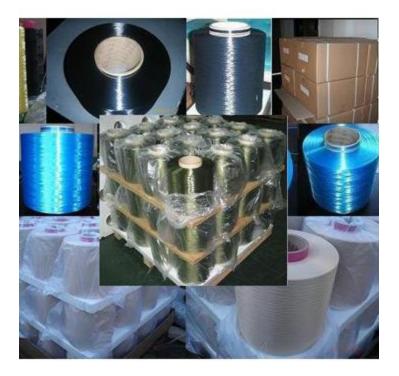
Huge opportunities ahead

Focus on specialties → Super specialties

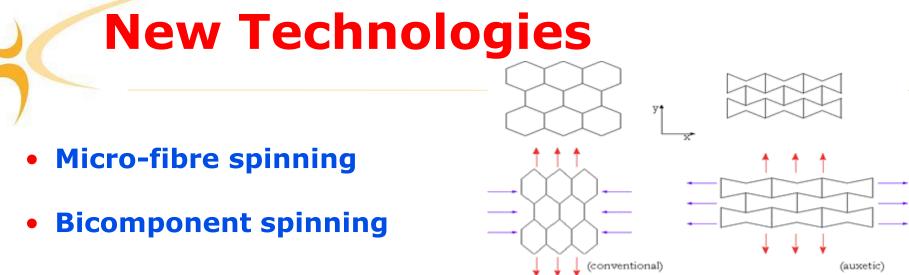
360⁰ focus on product selection

Functionality Directions

- High strength
- High modulus
- High thermal stability
- High flame and heat resistance
- High chemical resistance
- Special functionality



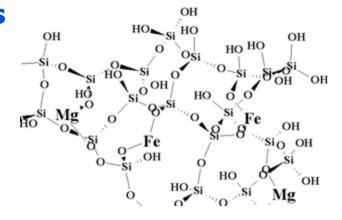
- Adaptable/smart
- High performance Nano fibres
- Combination of functionality Polymer blends
- Eco friendly Renewable resources, recycled



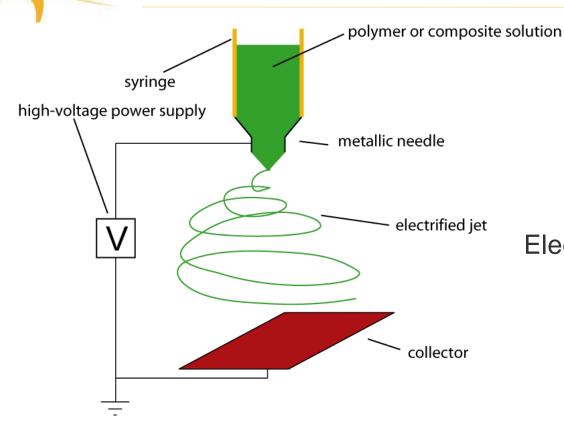
Advanced Fibres

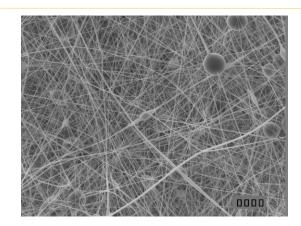
- HT-PES,
- UHMPE,
- Aramid (Kevlar, Nomex)
- Carbon
- PEEK
- Melamine (Basofil)
- Ceramic (Silicon Carbide)
- Electro spun nano fibres

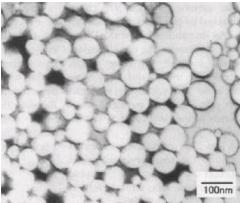
- Conducting Polyanilines, Polypryrroles
- Eco friendly PLA, PTT, recycled PET



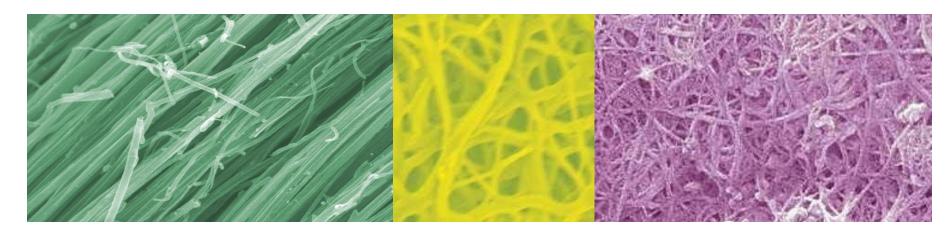
Conjugate spinning allowing incorporation of


microcapsules and inorganic substances


- Electro spinning for Nano fibres
- Auxetic Textiles
- Aerogels



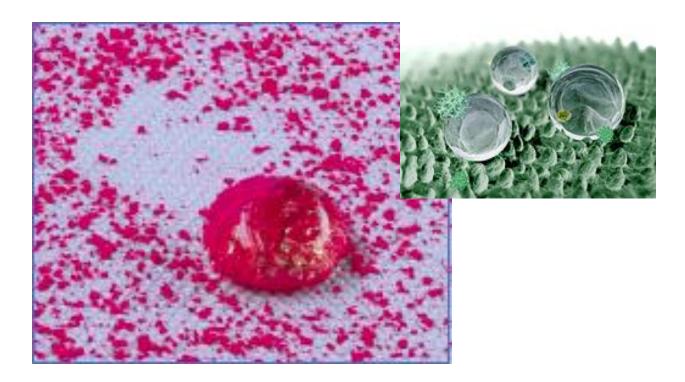
Electro Spinning


Electrospun polyester X 1000

Nanofibres from Toray- conventional

Nano-Materials

Nanotubes


Nanotissue

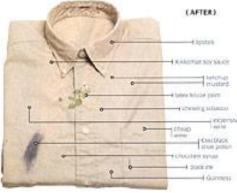
Nano-muscles

Nano Surfaces (Lotus Effect)

Self Cleaning Fabrics

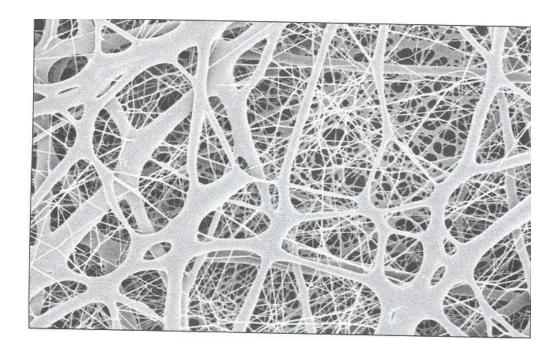
Biomemetic led to developing the fabric based on lotus leaf effect
 Alternative technology based on photocatalysis of Ti0₂ nano particles

New Functionalities


100 10

間目

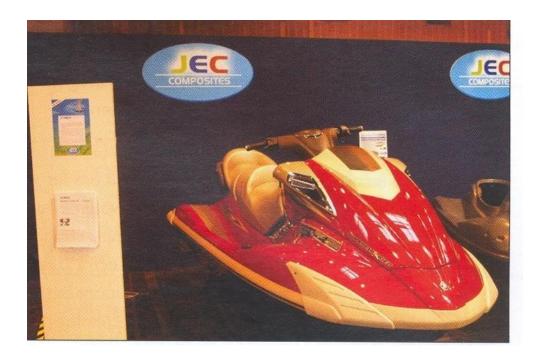
HOT PICKS AND BIG HITS



Nanofibres / Finishes

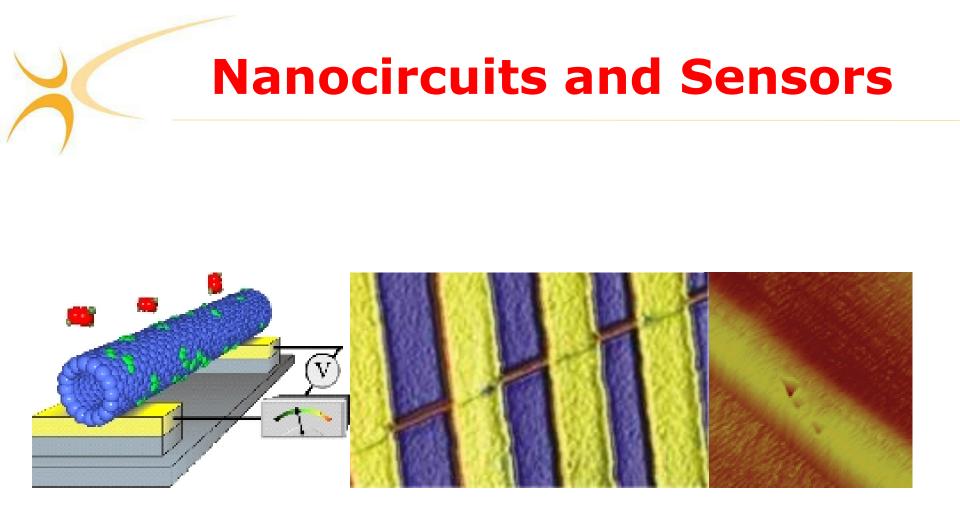
Nano Fibre Structures

Gradient
Porous
Oriented
Composite



Prepared by dual electro spinning to enhance

- •Filtration efficiency
- •Tissue engineering


Ref: Technical textile international Jun 2008.

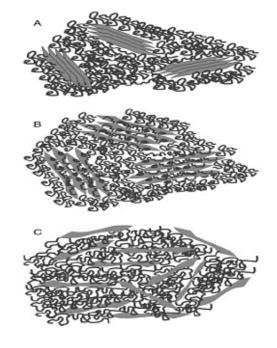
Nano Clay Composite

•NanoXcel a new generation sheet moulding compound used to produce WaveRunner by Yamaha motors and Interplastic Corp.

Ref : Technical textile international Jul/Aug 2008.

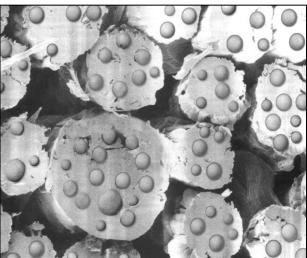
Nanotechnologies: A Business Case

Search for the launching customer


(military, paramedical, sports, industrial)

- Many Unknowns (medical guarantees)
- High Upfront investments
- New business models (product service systems)

Understanding of the Fundamentals of Nano's


- Much nano in no-nano
- Textile properties often badly described
- Most are at proof of concept stage
- Processes still small scale
- Functionalities are not stable / predictable
- Life-time behaviour is not known

Micro Encapsulation

 PCM encapsulation results in a thermoregulating effect, which keeps the microclimate temperature, close to the body surface, nearly constant

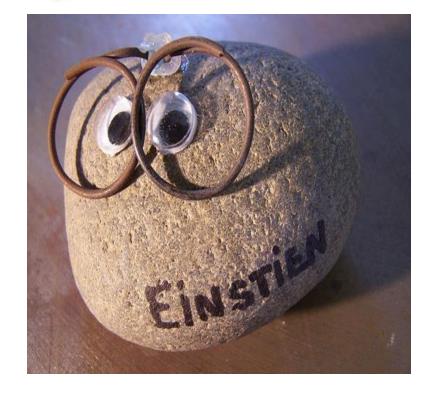
• Controlled release of micro encapsulated fragrance, vitamins, etc exploited in new brands of clothing

Ref: R.Shishoo, Techtextil India, 2007

Building Insulation with PCM Coated Fabrics

Water Proof Breathable Textiles

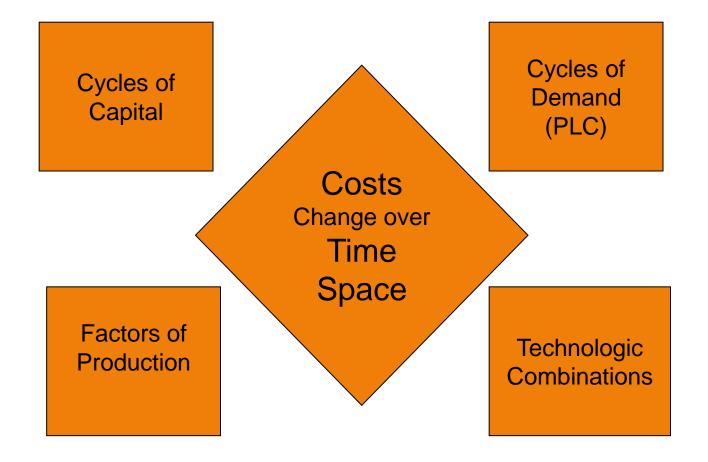
•Ticona's Riteflex PET elastomer is barrier to water but permeable to water vapour, at the same time recyclable


Wearable Electronics

•Vitaljacket T-shirt with built in heart wave monitor from Biodevices

Ref: Technical textile international Jun 2008.

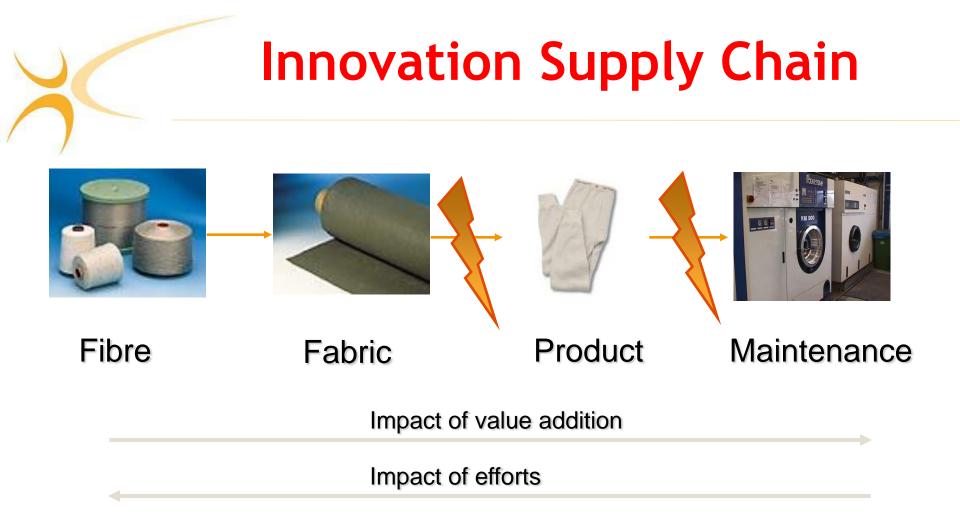
- Points to Consider Globally
- New Challenges
- Product Innovation
- Process Innovation
- Textile Education
- Conclusion


The Locus of Functionalisation

Where does added value make a difference?

Key Relations

• Costs: Costs of Labour (Globalisation)

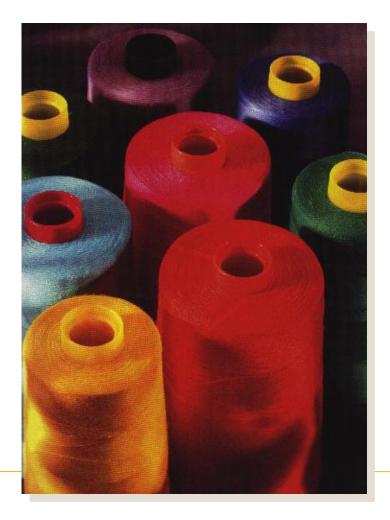

Costs of Capital (Technology)

• Time \ Point of Differentiation

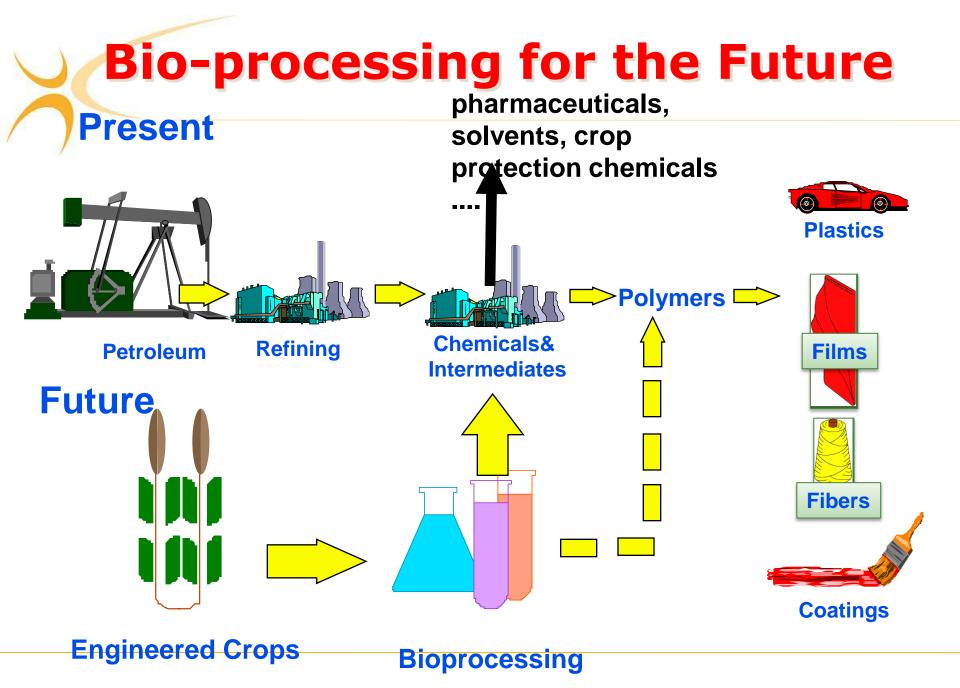
» Supply Chain Management

Your

»Access (transaction costs)



Technologies


- Functionalisation
- Customization
 - Scale versus Scope
 - Labour versus Capital Intensive

Process Environmentally Friendly

Producer-Colored Yarn

Fiber recycling

Typical recycling chain

- Collection network: costly to start!
- Sorting & identification: if needed
- Direct reuse (clothes) or as wipes: Vo

if possible

- Processing into products: most often
- Marketing & distribution of products
- Residue sent to Waste-To-Energy or landfills

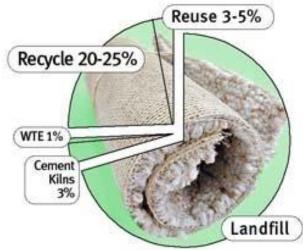
Process Environmentally Friendly

Bottles to Fiber/Fabrics

Process Environmentally Friendly

Nylon Carpet Recycling

Carpet recovery effort in US

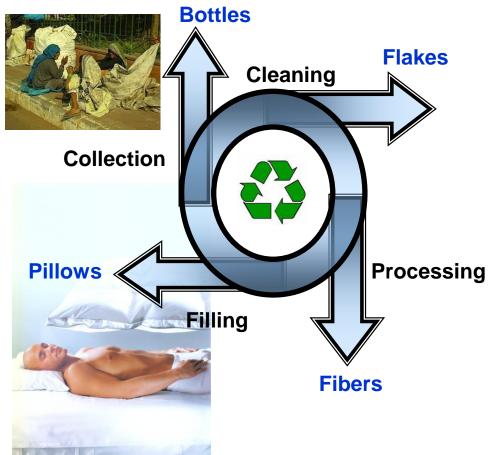

2012 Goals for Carpet Recovery: 40% Diversion from Landfill

	2002	2012
Total Discards	4,678	6,772
Reuse	0	203-339
Recycling 180		1,354-1,693
Waste to Energy	-	68
Cement Kilns	-	200
Landfill	4,498	4,812
Recycling Rate	3.8%	20-25%

(Millions of pounds | Carpet & Rug Institute)

Carpet America Recovery Effort (CARE): <u>www.carpetrecovery.org</u>

Agreement signed: January 8, 2002



Green Products - PET

Business to fulfill societal obligation along with earning adequate returns for shareholders

- Waste bottles collected by unskilled uneducated manpower - reduces land fill & provides earning opportunity for downtrodden
- Processed to produce fibers
- Fibers used to make pillows
- Business earning above cost of capital – Waste to wealth
- Self sustaining business

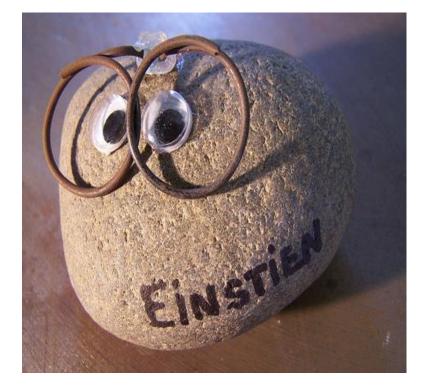
Livelihood to 2 lakh people at the bottom of the pyramid

Emerging Process Technologies

Yarn/ fabric/ process technologies

- •DREF spinning
- •3D weaving
- Spacer knitting

Multifunctional coating/Laminating


 Micro encapsulated finishing technology

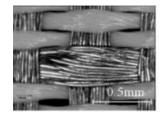
•Extrusion/Hot melt coating

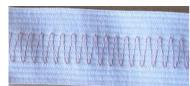
- Points to Consider Globally
- New Challenges
- Product Innovation
- Process Innovation
- Textile Education
- Conclusion

The value-drivers Variables that disciplines compete on:

- **Earning Potential:** What will the market compensate?
- > Time to Degree: The time required to earn a degree?
- Placement Rate: At graduation, do graduates have either a job or a post-graduate program opportunity?
- Educational Effectiveness: Discipline perceived hierarchy, faculty competence, and employers perception of programs effectiveness?
- > Tuition and expenses: The cost-per-year for students?
- Funding and student support: Availability of student support by a scholarship or student assistantship?

Why Study Textile Specializations


Textile critical for economic growth covering both apparel and technical textiles with large contribution to GDP


Textile technologies can be integrated with latest developments in material science, machinery, mechatronics, chemistry, biology, control, computers etc.

It is possible to design large number of special products based on the high variability of patterns and structures.

Textile growth driven not only by size of population but with societal development

Distance Education (.edu)

New green-space
At home low cost
Web-based on-demand
Highly motivational

Life-long distance learning

If You Cannot Beat Them- Join Them

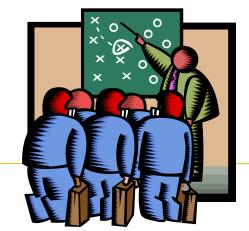
Incorporation and Merging of Textile Disciplines into Higher Growth Departments such as:

Fextile Fashion, Graphics & Design

Other Engineering Fields:

Mechanical Engineering

- Material & Polymer Science
- **Etc**


Paradigm Shift & Curriculum Modifications

Meet Aspirations of:

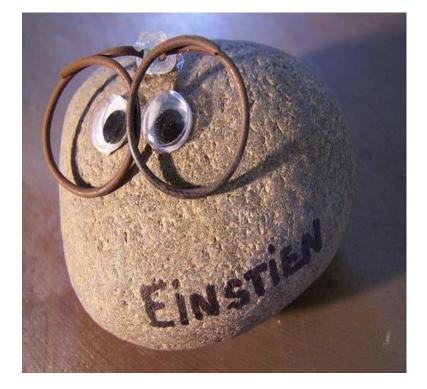
- Students
- Industry
- Educational Institutions
- Fundamentals of fiber, yarn, fabric & garment
- Integrated Science (Polymers, Biological & Information Science)

Focus on Rapidly Advancing and Emerging Disciplines:

- Composites
- Nanotechnologies & Structures
- > Biomimetics
- Technical Textiles
- Nonwovens

The Future of Education

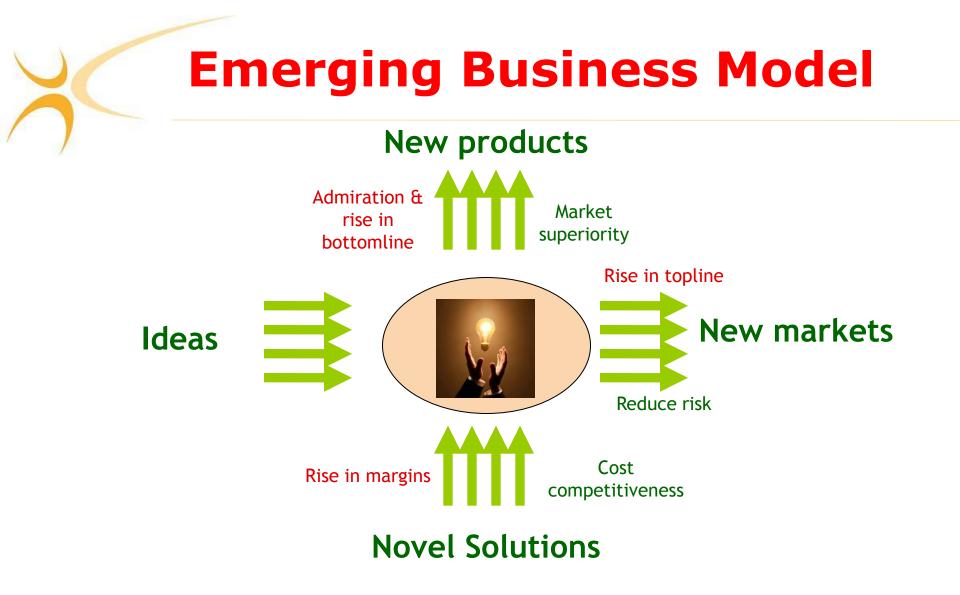
- Transition from Teaching to Learning
- Exponential Growth of Information
- Courseware Vacuum
- Expanding Gulf Between Literates and Super-Literates
- Our "Touch Points" for Interfacing with Society are Changing
- Learning Drivers
- The Age of Hyper-Individuality
- > Transition from Consumers to Producers


Source: The DaVinci Institute

The Resource Hurdle

- Do we have the money to spend on the necessary changes?
 - Fighting for resources will take time and divert attention from the underlying problems & the innovation agenda.
- Identify "Hot Spots" -- activities that have low resource input but high potential performance gains.
- What actions consume our greatest resources but have scant performance impact?
- > Identify "Cold Spots" -- activities that have high resource input but low performance impact.
- What activities have the greatest performance impact but are resource starved?
- Free up low-return resources and redirect them to high-impact

- Points to Consider Globally
- New Challenges
- Product Innovation
- Process Innovation


Conclusion

Future Directions

"Intelligent" adaptive textiles

- controlled comfort , antimicrobial activity, self cleaning potential
- "Intelligent" knowledge based technical textiles
 - Iocally compressive behavior and complex actions e.g. comfort type mattresses for disabled persons, intelligent car seats
- > Hybrid multifunctional textiles for protective clothing
 - improved protection (a barrier against the selected types of radiation and particles) with improved comfort

Leadership through business model innovation

Innovation to overcome challenges

Conclusions

- Global trends lead to new paradigm
- Abundance of low cost labour leads to industrial regression
- Lack of technology leadership (end of fibre dominance)
- Product Innovation: Low cost solution is the prime driver
- Process Innovation: Competitiveness through cost leadership
- Business innovation: Competitive edge is emerging paradigm
- Innovation in Education: Responsive to Students
- Innovation distinguishes leaders from followers