









INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

# GLOBAL HEAT AND MASS TRANSPORT IN SYSTEM: NEWBORN BABY SKIN – TEXTILE COMPOSITE – SURROUNDING

Ryszard Korycki, Izabela Krucińska Lodz University of Technology, Lodz, Poland







#### PROBLEM FORMULATION

- Neonate skin is not fully formed.
- Skin requires proper temperature and humidity which may vary within very narrow limits; thermal comfort is is extremely important.
- It is necessary to place the newborn within the incubator, which can adjust both temperature and humidity of air contacting the skin.





#### PROBLEM FORMULATION

- We introduce the heat balance for the newborn baby, kJ / (h·kg mass).
- Balance formulation according to:
  - EN ISO 7933 Ergonomic of the thermal environment Analytical determination and interpretation of heat stress using calculation of the predicted heat strain;
  - Agourram, Bach, Tourneux, Krim, Delnaud, Libert, Why wrapping premature neonates to prevent hypothermia can predispose to overheating, Journal of Applied Physiology, 108, 1674–1681, 2010.
  - G. Sedin, Physics and physiology of human neonatal incubation, chapt. 59 in Fetal and Neonatal Physiology, 2004.
- Heat balance is determined for the whole body of newborn.
   Effect of clothing, coats and environmental factors is modeled by the coefficients in the balance.





#### PROBLEM FORMULATION

### **Advantages**

- •Global description of heat transfer for the whole body (in macro-scale), it can cause the overheating (hyperthermia) or body cooling (hypothermia).
- •All heat loss phenomena are included, i.e. the convection + evaporation from the muscosa in the respiratory tract of marginal importance.
- •Coupled heat and mass transport is introduced, i.e. the part of heat is transported with the mass (the sweat).

### **Disadvantages**

- •Distribution of moisture (sweat) can not be determined.
- •It is impossible to determine the temperature map (i.e. distribution of state variable) and the local scale of description (cf. impact of PCM, complex clothing structure, different environmental conditions etc.).
- •The description uses a significant number of empirical relationships, it is not universal



#### **GLOBAL FORMULATION OF HEAT BALANCE**

### **Heat supplied by:**

Metabolic heat production

### Heat lost and absorbed by:

- •Conduction on contact surface K<sub>i</sub>
- Radiation on external surfaces R<sub>i</sub>
- •Convection on external surfaces C<sub>i</sub>,
- •Skin evaporation  $E_i$  (the only component that describes the moisture) Heat losses are determined for the six parts of the body:
- •Head *i*=1;
- •Trunk *i*=2:
- •Arms *i*=3,4;
- •Legs *i*=5,6.





http://www.superstock.com/stock -photos-images/1527R-1158617



#### **GLOBAL FORMULATION OF HEAT BALANCE**

Heat losses are determined for *i-th* part of the body as the sum:

$$K_i + R_i + C_i + E_i$$

Global heat loss from the muscosa within the respiratory tract by:

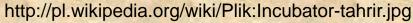
- •Convection C<sub>resp</sub>,
- •Evaporation E<sub>resp</sub>.

Metabolism (metabolic change over time) is determined as an empirical relationship and the function of postnatal age A, in kJ · h-1 · kg-1



http://gettinggreenwithbaby.blogspot.com/ 2013 03 01 archive.html






### **GLOBAL FORMULATION OF HEAT BALANCE**

$$\dot{M} - \left[ \sum_{i \text{ a ,b } 1 \text{ p d}} \left( R_i + C_i + K_i + E_i \right) + C_r + E_{rs} \right]_{ep} = S_s$$

Body heat storage rate S=0, i.e. metabolism is balanced by heat losses; thermal equilibrium determines constant temperature distribution on the skin. S>0, i.e. metabolism is greater than heat losses to surrounding; heat storage rate is accumulated; temperature increase which cause the hyperthermia. S<0, i.e. metabolism is less than heat losses; there is the heat deficit, temperature decrease which can cause the hypothermia.







http://www.ciazowy.pl/artykul,maluszek-pod-kontrola-do-czego-podlaczony-jest-wczesniak-w-szpitalu,2419,1.html



#### **GLOBAL FORMULATION OF HEAT BALANCE**

Heat loss by conduction exists only at the interface skin – mattress. It depends on:

- •Contact surface of the skin with a mattress  $A_{ki}$  in  $m^2$ ,
- •Conductive heat transfer coefficient;  $h_k = 0.84 \text{ kJ} \cdot h^{-1} \cdot m^2$ ,
- •Temperature difference between the surface of the skin  $T_i$  and the mattress  $T_m$ , measured in  ${}^{\circ}$ C by infrared thermometer,
- •Neonate body mass W<sub>t</sub> in kg.



$$K_i = h_k \left( T_i - T_m \right) A_k W_t^{-1}$$

http://gettinggreenwithbaby.blogspot.com/ 2013\_03\_01\_archive.html



#### **GLOBAL FORMULATION OF HEAT BALANCE**

Heat loss by radiation to surrounding exists from the skin and clothing to incubator space. There is the function of:

- •Stefan-Boltzmann constant  $\sigma=5,666667\cdot10^{-8}$  kJ  $h^{-1}m^{-2}K^{-1}$ ,
- •Skin emissivity  $\varepsilon_{sk} = 0.97$ ;
- •Effective surface area of skin segment subjected to radiation  $A_{ri}$ , in  $m^2$
- •Mean temperature of skin segment  $T_i$  measured in  ${}^{\circ}C$ ,
- •Mean temperature of radiation  $T_r$  measured by infrared thermometer in  ${}^{\circ}\!C$
- •Dimensionless reduction factor of thermal radiation and convection by clothing,  $F_{cl}$ =0,86 for combined medical clothing made of PVC foil and fabric,  $F_{cl}$ =0,98 for special clothing made of PVC foil, the range is from  $F_{cl}$ =1 for impermeable textiles to  $F_{cl}$ =0 for completely permeable clothing.



$$R_i = \sigma \, \varepsilon_s \, A_{kr} \left( T_{ii} + 2 \right)^4 - T \left( T_r + 23 \right)^4 F_b W_{tl}^{-1}$$

http://gettinggreenwithbaby.blogspot.com/ 2013\_03\_01\_archive.html



#### **GLOBAL FORMULATION OF HEAT BALANCE**

Heat loss by convection to surrounding exists from the skin and clothing to incubator space. There is the function of:

- •Convection coefficient of the specified body part  $h_{ci}$  in  $kJ \cdot h^{-1} \cdot m^{-2} \cdot {}^{\circ}C^{-1}$ ,
- •Temperature of particular part of the skin surface T<sub>i</sub> in °C,
- Temperature of surrounding air T<sub>a</sub> in °C,
- •Effective surface area of skin segment subjected to convection  $A_{ci}$ , in  $m^2$ ,
- •Dimensionless reduction factor of thermal radiation and convection by

clothing,  $F_{cl}$ 



$$C_i = h_c \left( T_i - T_a \right) A_c F_{ic} W_t^{-1}$$

http://gettinggreenwithbaby.blogspot.com/ 2013 03 01 archive.html



#### **GLOBAL FORMULATION OF HEAT BALANCE**

- Heat flow by evaporation at skin surface is the only possibility to transport the mass (i.e. sweat) from skin to surrounding. The coupled heat and mass transport is now described.
- Maximal evaporative heat flow is caused by sweat evaporation from the whole skin surface.



http://gettinggreenwithbaby.blogspot.com/ 2013 03 01 archive.html



### **GLOBAL FORMULATION OF HEAT BALANCE**

Heat loss by evaporation at skin surface to surrounding exists from the skin and clothing to incubator. There is the function of:

- •Difference of water vapor partial pressure between skin  $P_{s,H20}$  and surrounding  $P_{a,H20}$ ;
- •Dynamic total evaporative resistance of clothing and boundary layer of air  $R_{dyn}$  in  $m^2$  kPa  $W^{-1}$ ;
- •Evaporative heat transfer coefficient of specified body segment  $h_{ei}=1,67 h_{ci}$  in  $kJ h^{-1}mb^{-1}m^{-2}$ ;
- •Relative humidity of skin, w=0.06 for moderate temperature and dry skin, this parameter describe influence of clothing;
- Effective surface area of skin part subjected to evaporation A<sub>ei</sub>=A<sub>ci</sub> in m<sup>2</sup>;
- •Dimensionless reduction factor of mass transport by clothing, the range is  $F_{pcl}=1$  for completely permeable clothing  $F_{pcl}=0$  for impermeable textiles.

$$E_{i} = (P_{s,H_{2}O} - P_{a,H_{2}O})R_{d}^{-1} = h_{e} w(P_{his,H_{2}O} - P_{a,H_{2}O})A_{e} F_{p} W_{t}^{-1}$$



#### **GLOBAL FORMULATION OF HEAT BALANCE**

There are two components determined in muscosa of respiratory tract i.e. segmental heat losses by convection  $C_{resp}$  and evaporation  $E_{resp}$ .

$$C_{r} = \frac{1}{s} \dot{V}_{pE} C_{p} (T_{E} - T_{l}) W_{t}^{-1}$$
  $E_{r} = \frac{1}{s} \dot{V}_{pE} \delta (M_{E} - M_{l}) W_{t}^{-1}$ 

#### There is the function of:

- •Pulmonary ventilation rate  $V_F$  in  $kg h^{-1}$ ;
- •Heat capacity of air in normal conditions  $C_p=1,044$  kJ kg<sup>-1</sup> °C<sup>-1</sup>;
- •Temperature of exhaled air according to Hanson  $T_F$  in  ${}^{\circ}C$ ;
- •Temperature of inhaled air equal to surrounding temperature  $T_{\vdash}T_a$  in  ${}^{\circ}C$ ;
- •Denotes latent heat of vaporization  $\delta=243 \text{ kJ/g } H_20$ ,
- •Absolute humidity of exhaled air  $M_E$  in  $kg H_2 O/kg$  of dry air,
- •Absolute humidity of inhaled air  $M_1$  in  $kg H_2 O/kg$  of dry air,
- Partial pressure of water vapor in exhaled air P<sub>E</sub> in kPa;



#### SOLUTION OF PRESENTED PROBLEM

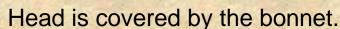
### Parameters to solve the above model are the following,

- cf. Agourram, Bach, Tourneux, Krim, Delnaud, Libert, Why wrapping premature neonates to prevent hypothermia can predispose to overheating, Journal of Applied Physiology, 2010.
- •The front part and upper section of incubator are open to surrounding.
- •Air temperature within incubator changes from initial  $T_{a0}$ =33,2°C to final  $T_{ak}$ =31,8°C in time t=30min; speed of change is negative -0.04°C/min.
- •Temperature of surrounding air within nurse room is  $T_a = (23.2 \pm 0.2)^{\circ}C$ ,
- •Mean radiation temperature is  $T_r = (19,9\pm0,2)^{\circ}C$ ; moisture of surrounding air is  $w = (44\pm1,9)\%$ .
- •Conditions within incubator: temperature for mixed air between interior and surrounding  $T_a=(23,2\pm0,2)^{\circ}C$ ; speed of air  $v=0,06ms^{-1}$ ; relative air humidity  $w=(35\pm4)\%$ .
- •Parameters of neonate: body mass  $W_t = (1,060 \pm 0,026) kg$ ; postnatal age  $(4,5 \pm 0,4) days$ ; body surface  $(0,100 \pm 0,010) m^2$ ; mean radiation temperature  $T_r = 30,6$ °C.
- •Surface temperature of mattress is equal to  $T_m = (31, 4\pm0, 1)$ °C.



#### SOLUTION OF PRESENTED PROBLEM

Temperatures and convection coefficients for particular parts of neonate body


| Particular part of neonate body | Covered           |                                                                          | Uncovered         |                                                                          |
|---------------------------------|-------------------|--------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------|
|                                 | T <sub>i</sub> °C | h <sub>ci</sub><br>kJ·h <sup>-1</sup> ·m <sup>-2</sup> ·°C <sup>-1</sup> | T <sub>i</sub> °C | h <sub>ci</sub><br>kJ·h <sup>-1</sup> ·m <sup>-2</sup> ·°C <sup>-1</sup> |
| Head                            | 35,53±0,72        | 3,63±0,11                                                                | 32,82±1,84        | 3,60±0,17                                                                |
| Trunk                           | $34,93\pm0,79$    | $2,84\pm0,09$                                                            | $32,33\pm1,30$    | 2,82±0,10                                                                |
| Arm (one)                       | $32,10\pm0,65$    | $4,02\pm0,03$                                                            | $29,50\pm1,85$    | 3,97±0,05                                                                |
| Leg (one)                       | $34,36\pm0,79$    | $3,84\pm0,04$                                                            | 31,57±1,50        | 3,82±0,05                                                                |
| Whole body                      | $34,37\pm0,68$    | $3,63\pm0,07$                                                            | $31,71\pm1,76$    | $3,60\pm0,08$                                                            |

Areas of particular parts of neonate body

| Particular part of | Area -10 <sup>-3</sup> m <sup>2</sup> |                 |               |  |
|--------------------|---------------------------------------|-----------------|---------------|--|
| neonate body       | $A_{ri}$                              | A <sub>ci</sub> | $A_{ki}$      |  |
| Head               | 21,43±0,08                            | 22,63±0,05      | 1,44±0,04     |  |
| Trunk              | $7,10\pm0,08$                         | 1,97±0,07       | 3,75±0,05     |  |
| Arm (one)          | $4,42\pm0,05$                         | $5,40\pm0,05$   | 0,40±0,05     |  |
| Leg (one)          | $10,06\pm0,04$                        | $11,99\pm0,05$  | $0,90\pm0,04$ |  |
| Whole body         | $55,04\pm0,07$                        | $56,76\pm0,06$  | 7,74±0,05     |  |



### **SOLUTION OF PRESENTED PROBLEM**



Thermal insulation of bonnet  $I_{cl}$  is described in  $m^2 \cdot {}^{\circ}C \cdot W^{-1}$ 

$$I_c = 0.0 \cdot 16^{-2} A_c^{7} + 0.2 \quad T1 A_c I$$



 $A_{co}$  is dimensionless proportional area of head covered by bonnet; Th is material thickness in m.

Heat reduction factor for radiation and convection acc. to Nishi and Gagge

$$F_{c-h} = [(h_{a-h} + h_{r-dh})]_{ac} + (1+1.9) I_{c}^{-1}]_{ac}^{-1}$$

Heat reduction factor for evaporation according to Nishi and Gagge

$$F_{pc-h} = \{ (1 + 2 \cdot 2 \cdot h_{c-hd}) [P_{ce} - [1_{\overline{la}}(1.9 \cdot dI_c)^{-1}(h_{c-h} + h_{c-h}1)^{-1}] \}^{-1}$$

Main parameter is time to reach the safety limit (38°C) time of hyperthermia (40°C, 43°C) and rate of body cooling for hypothermia.

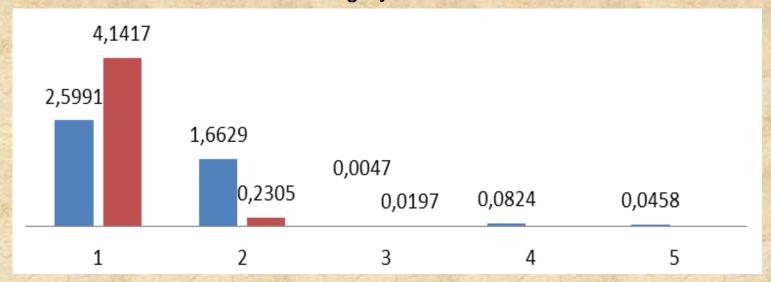


#### **SOLUTION OF PRESENTED PROBLEM**

Heat loss by radiation for head

| Material      | Relative area of covering bonnet |             |             |  |
|---------------|----------------------------------|-------------|-------------|--|
| thickness [m] | 20%                              | 60%         | 100%        |  |
| 0,001         | 1,726537723                      | 1,463927064 | 1,26446982  |  |
| 0,003         | 1,655039492                      | 1,312611774 | 1,078808162 |  |
| 0,005         | 1,588556011                      | 1,187095692 | 0,937262784 |  |

Heat loss by radiation for other body parts


| Darticular part of page to body | Heat loss by radiation |                       |
|---------------------------------|------------------------|-----------------------|
| Particular part of neonate body | F <sub>cl</sub> =0,98  | F <sub>cl</sub> =0,86 |
| Head                            | 0,588482716            | 0,516423608           |
| Trunk                           | 0,293127285            | 0,257234148           |
| Arm (one)                       | 0,799882707            | 0,701937885           |
| Leg (one)                       | 4,379545427            | 3,843274558           |



#### **SOLUTION OF PRESENTED PROBLEM**

### The most adverse physiological case for neonate:

- •special medical clothing made of PVC foil, reduces thermal radiation and convection by means of clothing insignificantly  $F_{cl}=0.98$ ;
- •minimal material thickness of the bonnet 1mm = 0,001m,
- •minimal relative area of covering by bonnet 20%.



Visualization of heat losses for head and other body parts

blue – head; red – other body parts; 1 – radiation+convection; 2 – evaporation;

3 – conduction; 4 – convection in respiratory tract; 5 – evaporation in respiratory tract



#### **SOLUTION OF PRESENTED PROBLEM**

Introducing now A=4,5 days;

$$S = \dot{M} - \left[ \sum_{\substack{i \text{ a b, p l o l a}}} (R_i + C_i + K_i + E_i) + C_r + E_r \right] = 8.5 \text{ p s} - 8.7 \quad 0 = -0.28 \quad 5$$

- Body heat storage rate is negative.
- Heat production is less than the heat lost by the body, temperature decrease which can cause hypothermia.



#### CONCLUSIONS

- The heat source is the metabolism, the heat is lost by a few mechanisms.
- There is coupled heat and mass transport because the evaporation describes a part of heat transported with the sweat. The skin temperature is determined but is impossible to define the moisture distribution.
- The obtained results are approximate because:
  - Each newborn baby has the individual heat transport parameters;
  - Input parameters are wide tolerated, its range is extended;
  - Some correlations are empirical for the limited number of neonates;
  - Some assumptions are introduced to simplify the solution.
- The most critical body part is head characterized by the maximal heat loss
- We can influence this loss using the bonnet: by means of the structure, material thickness and area of covering. The main reducing factor is area of covering, material thickness is of less significance.
- Heat loss can be reduced by application of different textiles  $(F_{cl}; F_{pcl})$ .
- All these parameters help to control the hyperthermia and hypothermia of newborn baby by the times to reach the temperatures 38°C; 40°C; 43°C.